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Our goal for the next few talks is to understand stochastic differential equations. For
example, as a model of stochastic gradient descent [SST92, Equation 2.7] considers the
weightsW of a neural network — a random variable — evolving according to the equation

∂W

∂t
= −∇WL(W)−∇WV (W) + η(t) (0.1)

where L is the loss function and η(t) is “white noise”. What does this mean? When say
some dynamic process “evolving according to a (non-stochastic) differential equation”
what we are really talking about is solutions to that differential equation. Does (0.1) have
solutions, and if so how do we find them? More fundamentally, what does it mean for W
to be a solution to (0.1)?

This talk has used two main references. For stochastic processes and Brownian motion
we refer to [Øks13, Chapter 2] and for technical results about product measures we refer
to [Tao11, Chapter 2.4]. Although not used directly in this talk, [Man13] gives an intuitive
introduction to stochastic calculus on manifolds and will likely be referenced in the sequel
to this talk.

1 What is a stochastic process?

In this talk we will focus on defining stochastic processes. Let M be a topological space
equipped with its Borel topology B, which will be the space in which our stochastic
processes take values. Typically M will be a smooth manifold and in this talk nothing is
lost by taking M = Rn. Let T be any set, representing time for our stochastic process.
Typically T will be some subset of Z or R, and almost always will have a total order.
Finally let (Ω,F , φ) be a probability space.

Definition 1. AnM-valued stochastic process parametrised by T is a functionX : T×Ω →
M such that the function Xt : Ω → M is a random variable for all t ∈ T .

When T is also measurable space typically we will assume that a stochastic process
X : T × Ω → M is measurable.

For each fixed t ∈ T we have a random variable Xt, which by definition is a measurable
function

Xt : Ω → M ω 7→ Xt(ω) .

We could also fix an outcome ω ∈ Ω and consider the function

ω̃ : T → M t 7→ Xt(ω) .

The function ω̃ is called a path of the stochastic process (Xt). The paths of a stochastic
process are exactly analogous to the samples of a random variable.
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Let MT denote the set of all functions from T to M . The mapping ω 7→ ω̃ identifies
Ω with a subset Ω̃ ⊆ MT What do events look like in Ω̃? We consider the σ-algebra C
generated by sets of the form{

ω̃ ∈ Ω̃ | ω̃(t1) ∈ B1, . . . , ω̃(tn) ∈ Bn

}
where each Bi ⊆ M is measurable

for t1, . . . , tn ∈ T . The σ-algebra C is contained in the σ-algebra F̃ by induced on Ω̃ by
F . Indeed,{

ω̃ ∈ Ω̃ | ω̃(t1) ∈ B1, . . . , ω̃(tn) ∈ Bn

}
∼= {ω ∈ Ω | Xt1(ω) ∈ B1, . . . , Xt1(ω) ∈ Bn}
∼= X−1

t1
(B1) ∩ · · · ∩X−1

tn (Bn) ⊆ F .

So we can consider a stochastic process as the probability space (Ω̃, C, φ̃) where φ̃ is

induced from φ, or equivalently as the probability space (MT , C ′, φ̃) where C ′ = σ(C∪{Ω̃c})
and φ̃(Ω̃c) := 0.

The stochastic process (Xt) can, in essence, be recovered by defining

X̃t : Ω̃ → M ω̃ 7→ ω̃(t)

for each t ∈ T . Indeed for each t ∈ T and measurable B ⊆ M we have

P(X̃t ∈ B) = φ̃(X̃−1
t (B))

= φ̃(
{
ω̃ ∈ Ω̃ | ω̃(t) ∈ B

}
)

= φ({ω ∈ Ω | Xt(ω) ∈ B})
= φ(X−1

t (B))

= P(Xt ∈ B)

and likewise for the joint distributions. This is not the only way to define a random
variable on (MT , C ′, φ̃), and in fact in some cases it is the wrong way. More on this later.

So, there is a relationship between stochastic processes and probability spaces on MT .
This perspective is very natural. The elements of MT are trajectories in M parametrised
by T and the choice of a probability measure on MT amounts to choosing a distribution
over these trajectories. This fits nicely with the ideas discussed in the first talk.

This is a useful perspective to have, so lets take a digression to discuss a sensible choice
of σ-algebra on MT . Given a function f : T → M and t ∈ T we want to be able to talk
about the event that f(t) ∈ B for any measurable B ⊆ M . To formalise this, to each
t ∈ T we can consider the function which is evaluation at t:

πt : M
T → M , f 7→ f(t) .

Given a measurable set B ⊆ M we have

π−1
t (B) =

{
f ∈ MT | f(t) ∈ B

}
so in other words, for all measurable B ⊆ M and t ∈ T we want π−1

t (B) ⊆ MT to be
measurable.

Definition 2. Given a measurable space (M,B) and set T , the product σ-algebra1 on
MT , which we denote BT , is the smallest σ-algebra containing all sets of the form π−1

t (B)
where t ∈ T and B ⊆ M is measurable. In symbols:

BT = σ

(⋃
t∈T

{
π−1
t (B) | B ∈ B

})
.

1Also called the cylindrical σ-algebra.
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It is natural to ask about the relationship between BT and the Borel σ-algebra of the
product topology on MT . When the cardinality of T is at most countable these coincide,
but in general BT is only contained within the Borel σ-algebra. The product σ-algebra
is relatively coarse; if E ∈ BT then the characteristic function 1(f ∈ E) can only depend
on the value of f at countably many inputs.

A probability measure φ̃ on (MT ,BT ) induces a stochastic process in the same way as
above. In the next section we will see that specifying all finite joint distributions induces
a unique probability measure on (MT ,BT ) which agrees with these joint distributions.
Hence a typical recipe for constructing a stochastic process is:

• Specify the finite dimensional joint distributions of the process. I.e. for all (t1, . . . , tk) ∈
T ∗ specify the joint distribution of (Xt1 , . . . , Xtk).

• Use this to define a measure on (MT ,BT ), which in turn induces a stochastic process
with the specified joint distributions.

• Modify the resulting stochastic process so it has any other desired properties.

The last step is necessary because the σ-algebra BT cannot distinguish some properties
we care about, such as continuity. Probability measures on (MT ,BT ) should be thought
of as classifying stochastic processes up to equivalence of all finite dimensional joint dis-
tributions. More later.

2 Kolmogorov’s extension theorem

Let (M,B) be a measurable space and T a set. In this section we will discuss Kolmogorov’s
extension theorem, which allows us to uniquely define a probability measure on (MT ,BT )
— a stochastic process — from a tractable description. Specifically we will see that, under
certain conditions, specifying a probability distribution on each (MF ,BF ) where F ⊆ T
is finite uniquely determines a distribution on (MT ,BT ).

Example 1. Take M = R and let B be the Borel σ-algebra. If F is a finite set then we
can identify RF ∼= Rn where n = |F |, and in this case BF is the usual Borel σ-algebra on
Rn.

Recall the evaluation maps πt : M
T → M . Likewise, for each subset S ⊆ T we can

consider the map which restricts the domain of a function to S:

πS : MT −→ MS , f 7−→ f |S

where f |S is the function f with domain restricted to S. Given S ′ ⊆ S we can likewise
consider the restriction of functions from MS to MS′

, which we denote by πS
S′ .

Lemma 3. For any S1 ⊆ S2 ⊆ S3 ⊆ T we have πS3
S1

= πS2
S1

◦ πS3
S2
.

Now lets consider how a measure φ on (MT ,BT ) interacts with the intermediate meas-
urable spaces (MS,BS). For any S ⊆ T we can define φS(B) = φ(π−1

S (B)) where B ⊆ MS

is measurable. It is easy to check that this is a measure on (MS,BS). Furthermore, given
S ′ ⊆ S we can consider the measure defined by

(φS)S′(B′) = φS((π
S
S′)−1(B′))
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where B′ ⊆ MS′
is an event. By applying definitions we can see

(φS)S′(B′) = φS((π
S
S′)−1(B′))

= φ(π−1
S (πS

S′)−1(B′))

= φ((πS
S′ ◦ πS)

−1(B′))

= φS′(B′)

so (φS)S′ = φS′ and everything is works as we expect.

Definition 4. Let S ′ ⊆ S and consider the measurable spaces (MS′
,BS′

) and (MS,BS).
Two measures ρ′ and ρ on MS′

and MS respectively are compatible if ρS′ = ρ′.

Now suppose that we also have a Hausdorff topology on M such that every compact
set is measurable. In future applications this topology will always be ‘nice’ (eg. a complete
metric space like Rn), so there is no harm in thinking about M in this way now. To state
the theorem we need to be able to state a technical condition on measures on MF where
F ⊆ T is a finite subset. This condition will be essentially be automatically true for any
topological space M we might be interested in.

Definition 5. A measure φ on M is inner regular if the measure of any measurable
B ⊆ M can be approximated by the measures of the compact sets it contains:

φ(B) = sup {φ(K) | K ⊆ B where K is compact} .

Theorem 6 (Kolmogorov’s Extension Theorem). Consider the set MT of all functions
T → M where T is any set and M is a measurable space with σ-algebra B and also a
Hausdorff topological space where all compact sets are measurable. For each finite set
F ⊆ T consider the measurable space (MF ,BF ) and suppose we have a collection of
measures {ρF | F ⊆ T finite} such that:

(1) For any finite F ′ ⊆ F the measures ρF ′ and ρF are compatible in the sense of
Definition 4.

(2) Each measure ρF on (MF ,BF ) is inner regular with respect to the product topology
on MF .

There is a unique measure φ on (MT ,BT ) which agrees with all the measures ρF . That
is,

φ(π−1
F (B)) = ρF (B)

for all finite F ⊆ T and measurable B ⊆ MF .

3 Brownian motion

We now use Kolmogorov’s extension theorem to construct Brownian motion on Rn, fol-
lowing [Øks13, Chapter 2.2]. In the notation of the above section we take M = Rn and
T = [0,∞).

Fix a ∈ Rn. This will be the starting point of our Brownian motion. Consider the
function

p(t, x, y) =
1

(2πt)n/2
exp(−1

2t
∥x− y∥) where x, y ∈ Rn t > 0

which, for fixed x, is the n-dimensional Gaussian distribution with mean x and standard
deviation

√
t. At t = 0 we define p(0, x, y) = δx(y) to be the Dirac delta distribution at

x.
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We want to define Brownian motion so that if we observe the particle at x ∈ Rn, its
position after a period of time ∆t is given by a Gaussian distribution with mean x and
standard deviation

√
∆t. Given times t = {t1 < t2 < · · · < tk} ⊆ [0,∞) we define a

measure ρt on (Rn)k as

ρt(B) =

∫
B

p(t1, a, x1)p(t2 − t1, x1, x2) · · · p(tk − tk−1, xk−1, xk)dx1 · · · dxk

where B ⊆ (Rn)k is measurable. One can show that this is a consistent sequence of
probability measures (basically amounts to observing that

∫
Rn p(t, x, y)dy = 1) and so by

Kolmogorov’s extension theorem this induces a measure β which agrees with the above
finite dimensional distributions. We call this the Brownian motion measure. This in
turn asserts the existence of a stochastic process with the above finite dimensional joint
distributions.

Theorem 7 (Kolmogorov’s continuity theorem). Let (M,d) be a complete metric space
and (Ω,F , φ) a probability space. Let X : [0,∞) × Ω → M be a stochastic process and
suppose for all t > 0 there exist α, β,D > 0 such that

E(d(Xs1 , Xs2)
α) ≤ D|s1 − s2|1+β for all 0 ≤ s1 < s2 ≤ t .

Then there exists a stochastic process X ′ : [0,∞)× Ω → M as above such that:

(1) For almost all ω ∈ Ω the function t 7→ X ′
t(ω) is continuous.

(2) For all t ≥ 0 we have Xt = X ′
t (almost surely).

Using this theorem, one can show that there is a version of Brownian motion which is
almost surely continuous. This is called canonical Brownian motion.

4 Some wrinkles

The perspective of a stochastic process as a measure on (MT , C) where C is appealing:
a stochastic process is simply distribution over all possible paths in our manifold M .
Unfortunately the σ-algebra BT is not sufficiently expressive for our purposes.

In the Brownian motion case: M = Rn, T = [0,∞) and β the Brownian motion
measure on MT , it would be nice if we could reframe Kolmogorov’s continuity theorem
as saying that

“β(C(T,M)) = 1”

where C(T,M) is the set of all continuous functions from T to M . Unfortunately C(T,M)
is not a BT -measurable set! Instead, Kolmogorov’s continuity theorem turns up in how
we associate a function B : T ×Ω → M to the measure β, where Ω = MT . We now refer
to the MathOverflow answer [MO]. Let Q = T ∩ Q, the important property of Q being
that it is countable and dense in T . Define the set of functions

U =
{
ω ∈ MT | ω|Q is uniformly continuous on bounded sets

}
One can show that U is BT -measurable. For all ω ∈ U we can define

B(t, ω) =

{
ω(t) t ∈ Q

limQ
s→t ω(s) t /∈ Q
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where limQ
s→t ω(s) denotes the limit taken within Q. The content of Kolmogorov’s con-

tinuity theorem in this context is that β(U) = 1, and so for ω /∈ U we can choose B(t, ω)
to be anything. The map t 7→ B(t, ω) is continuous for all ω ∈ U and so the resulting
process is almost surely continuous.

A better approach, in my opinion, would be to use a finer σ-algebra on MT which
contains C(T,M) (and other relevant function spaces) and try to construct a measure on
that space directly. Or, perhaps, to replace MT with C(T,M). This way one could define
a stochastic process as a distribution over paths in M .
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