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In this talk we will discuss how to interpret an equation of the form

dX

dt
= a(t,X) + b(t,X) · “noise” (1)

whose solution is supposed to be a stochastic process X = (X(t))t∈[0.∞). What people
(usually) mean by (1) is the integral equation

X(t) = X(0) +

∫ t

0

a(s,X(s)) ds+

∫ t

0

b(s,X(s)) dB(s)

where B(t) is Brownian motion, and so we need to make sense of the integral

“

∫ t

0

b(s,X(s)) dB(s)” .

More generally, given two stochastic processes X and Y we wish to define the integral of
X with respect to Y :

∫ t

0
X(s) dY (s).

Before continuing we will recall that there are three concepts of integration, all of
which coincide for functions f : R→ R but are a priori distinct [Tao08]. We have:

(1) Antidifferentiation: for f above
∫
f satisfies f = d

dx

∫
f .

(2) Measure-theoretic integrals : for f above
∫
[a,b]

f(x) dx is the area under the curve.

These types of integrals are used to compute things like volume, the mass of an
object from its density function, etc.

(3) Path integrals : for f above this is
∫ b

a
f(x)dx = −

∫ a

b
f(x)dx. These types of integrals

are used to compute things like the work done by a field on a particle.

In the study of non-stochastic differential equations usually one considers integrals of the
first kind, however for stochastic integral equations the right model is to generalise path
integrals. Lets consider how the path integral

∫ b

a
f(x)dx is defined. Let x0, x1, x2, . . . , xn ∈

R be points along a continuous path P from x0 = a to xn = b. Note that we do not require
that xi < xi+1, so the path can both backtrack and leave the interval [a, b]. The path
integral of f along P is defined to be the limit of

n−1∑
k=0

f(xk)(xk+1 − xk)

as the jump sizes ∆xk = xk+1 − xk all approach zero. For paths in R it turns out that
the value of this limit depends only on the endpoints of the path a and b (and f) so we
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denote it by
∫ b

a
f(x)dx, however when generalised to higher dimensions the value of the

integral depends on the path P .
For a path a = x0 < x1 < x2 < . . . < xn = b ∈ R with fixed step size ∆x we can

generalise the path integral
∫ b

a
f(x)dx and consider the Riemann-Stieltjes integral∫ b

a

f(x)dg(x) := lim
∆x→0

n−1∑
k=0

f(xi)(g(xi+1)− g(xi))

which exists given conditions on f and g which constrain how wildly they can fluctuate1.

1 Examples of stochastic integration

A discrete-time example We first consider an example coming from the study of
discrete-time martingales, in [Wil91, Chapter 10.6]. Let X = (Xn)

∞
n=0 be a discrete time

real-valued stochastic process representing the price of some asset changing over time.
For simplicity suppose at time n = 0 we have X0 = 0, so Xn represents the change in the
price of the asset from a fixed historical point (it may be negative). If we were to buy one
unit of the asset at time n = 0 then Xn is our profit (or loss) if we were to sell at time n.
Suppose we have a strategy for buying and selling this asset over time. We can represent
this strategy by a stochastic process2 C = (Cn)

∞
n=0, where Cn is the amount of the asset

we own — our stake — at time n. The change in our position from time n − 1 to n is
Cn−1(Xn −Xn−1). This means our net position at time Yn is

Yn = (C •X)n :=
n−1∑
k=0

Ck(Xk+1 −Xk)

This is the discrete analogue of the stochastic Itô integral of C with respect to X. There
is an obvious continuous time analogue: suppose the price of the asset X = (X(t))t∈[0,∞)

now varies continuously in time t, and that we can also continuously vary our trading
strategy C = (C(t))t∈[0,∞). Let Y (t) be our net position at time t. We might hope that
we could approximate Y (t) by discretising the interval [0, t] and computing “discrete”
integrals using this discretisation, and furthermore that finer discretisations would produce
increasingly good approximations of Y (t). That is

Y (t) = lim
n→∞

n−1∑
k=0

C(tk)(X(tk+1)−X(tk)) =:

∫ t

0

C(s)dX(s)

where tk = k
n
t. This is, by definition, the Itô integral of C with respect to X. Before

explaining when this limit exists and commenting on its uniqueness we will consider
another example.

1A sufficient condition is that f is α-Hölder continuous and g is β-Hölder continuous where α+ β > 1.
2For this to be a valid strategy we need to impose some conditions on C. In particular Cn cannot depend
on any Xm where m > n since this would mean we could see into the future. To formalise this we
consider the σ-algebras Fn = σ(X0, . . . , Xn), giving an ascending sequence of σ-algebras F0 ⊆ F1 ⊆ · · ·
(a filtration). One thinks about Fn as representing the information revealed at time n. We impose
the condition that Cn must be Fn-measurable (C is predictable with respect to the filtration), which is
equivalent to Cn = f(X0, . . . , Xn) for some measurable function f . While in the discrete time case
the condition that C is predictable only serves to restrict ourselves to physically plausible
strategies, in the continuous time case it is a necessary condition for the Itô integral to
converge.
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Algorithm 1 Metropolis-Hastings sampler

Require: Initial x0, a distribution q(x) where we can compute q(x′)/q(x) easily.
1: x← x0

2: loop
3: Draw x′ from N (x, σ2) ▷ Generate a proposal for the next state
4: α← min(1, q(x′)/q(x))
5: With probability αt output x

′ and set x← x′ ▷ Accept/reject the proposal

A sampling example Recall the Metropolis-Hastings (MH) algorithm for Markov
Chain Monte Carlo (MCMC) sampling (Algorithm 1). Suppose we have a distribution
q(x) which we wish to sample from. It is frequently the case that, while it may be hard
to compute q(x) exactly, it is fairly easy to compute q(x) up to a fixed multiplicative
constant and hence q(x′)/q(x) may be easily computed.

Let B(t) be standard Brownian motion and consider discrete time intervals τ1, τ2, . . .
where σ2 = τn+1 − τn is fixed. It is a property of Brownian motion that each B(τn+1) −
B(τn) ∼ N (0, σ2) and is independent from any other increment. Let Xn be the ‘position’
of the MH-sampler at time τn, where we consider the sampler to stay at its current position
if a proposal is rejected. Then X0 = x0 and

Xn =

{
Xn−1 +N where N ∼ N (0, σ2) w.p. αn

Xn−1 w.p. 1− αn

for n ≥ 1, where αn = min(1, q(Xn−1 +N)/q(Xn−1)). Let

A(Xn) =

{
1 w.p. αn

0 w.p. 1− αn

where αn = min

(
1,

q(Xn−1 +B(τn+1)−B(τn))

q(Xn−1)

)
We then have that

Xn = x0 +
n−1∑
k=0

A(Xk)(B(τk+1)−B(τk))

since B(τk+1) − B(τk) ∼ N (0, σ2). That is, the path of the sampler is a solution to the
discrete stochastic integral equation

X = x0 + A(X) •B .

2 The Itô and Stratonovich integrals

Let X = (X(t))t∈[0,∞) and Y = (Y (t))t∈[0,∞) be stochastic processes.

Definition 1 (Itô integral). We define the Itô integral of X with respect to Y as the
stochastic process Z(t)

Z(t) :=

∫ t

0

X(s) dY (s) := lim
n→∞

n−1∑
k=0

X(tk)Y ((tk+1)− Y (tk))

provided the limit on the right-hand-side exists as a limit in probability.
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Definition 2 (Stratonovich integral). We define the Stratonovich integral of X with
respect to Y as the stochastic process Z̊(t)

Z̊(t) :=

∫ t

0

X(s) ◦ dY (s) := lim
n→∞

n−1∑
k=0

X( tk+tk+1

2
)Y ((tk+1)− Y (tk))

provided the limit on the right-hand-side exists as a limit in probability.

Sufficient conditions for the existence of the Itô and Stratonovich integrals are difficult
to state briefly given we aren’t assuming a background in stochastic processes. The Itô
integral

∫ t

0
X(s) dY (s) exists if both X and Y are semimartingales adapted to the same

filtration:

• A filtration F = (Ft)t∈[0,∞) is an ascending sequence of σ-algebras. The σ-algebra
Ft represents the information revealed at time t. Typically we might take Ft =
σ(
⋃

s≤t X(s)). A stochastic process X is adapted to F if X(t) is Ft-measurable.

• An adapted stochastic process X is a martingale if X(t) = E(X(t+∆t) | Ft) for all
t,∆t > 0. The condition of being a martingale means that the average behaviour
of the process in the future is predicated by its history.

• An adapted stochastic process X is a local martingale if there exists an sequence of
random3 times (τn)

∞
n=1 which are (almost surely) strictly increasing and diverging

to infinity such that, for all τn, if we stop
4 X at time t = τn it is a martingale. This

has the effect of ‘averaging out’ large but rare fluctuations away from martingale
behaviour.

• An adapted stochastic process is a semimatingale if it can be written as the sum
of a local martingale and a process of finite variation, and if its paths are right
continuous with left limits (càdlàg).

The class of semimartingales arose from an attempt to find the most general class of
integrators for the Itô integral and can, in some sense, be characterised in those terms.
See [Pro86, Definition 3.3, Theorem 10.1]. It is a fairly broad class; in particular all
adapted Lévy processes [Pro05, Chapter I.4] are semimartingales [Pro05, Chapter II.3].

Conditions for the existence of the Stratonovich integral are difficult to state suc-
cinctly, and Definition 2 is not the most general description of the Stratonovich integral
[Man13, Section IV.D]. The Stratonovich integral is the correct, coordinate independent
generalisation of stochastic integration to manifolds: see [Eme89, Chapter VII]. One can
usually translate between Itô and Stratonovich integrals using a correction term [Pro05,
p. 82].

For further reading, [Man13] gives a survey on stochastic integration, [Øks13, Chapter
3.1] constructs the Itô integral in the special case where Brownian motion is the integrator,
[Pro86] gives an introduction to Itô integrals with technical details in a more general
setting, and [Pro05] is a fully detailed reference (see in particular Chapter II Theorem 21
for the existence of Itô integrals).

3The fact that these times are stochastic is critical: it is easy to show that if there exist deterministic
localising sequence of stopping times τn then X is a martingale.

4We define the stopped process Xτn(t) := X(min(t, τn)).
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3 Stochastic differential equations

We now explain the typical interpretation of

dX

dt
= a(t,X) + b(t,X) · “noise” (2)

as a stochastic integal equation, following the motivation given in [Øks13, Chapter 3.1].
Let η(t) be the noise term. One might desire the following properties of η(t):

(1) η(t) and η(s) are independent for t ̸= s.

(2) The joint distribution (η(t1 + t), η(t1 + t), . . . , η(tn + t)) does not depend on t, for
any sequence t1, . . . , tn. (stationary)

(3) Eη(t) = 0 for all t.

The existence of such a suitable stochastic process η is dubious: any process satisfying (1)
and (2) cannot have continuous paths and if we additionally require E(η(t)2) = 1 then
η(t) cannot be measurable in t [Øks13, p. 21].

Instead, we can consider 0 = t0 < t1 < · · · < tn = t and re-write a discretised version
of (2) as

X(tk+1)−X(tk) = a(tk, X(tk))∆tk + b(t,X(tk))η(tk)∆tk

where ∆tk = tk+1 − tk. We now replace η(tk)∆tk by a stationary stochastic process with
independent increments and mean zero. People usually choose Brownian motion B(t)
since it is the only such process with continuous paths, although many Lévy processes
also satisfy these properties and their paths are right continuous with left limits (càdlàg).
We then find

X(t) = X(0) +
n−1∑
k=0

a(tk, X(tk))∆tk +
n−1∑
k=0

b(tk, X(tk))(B(tk+1)−B(tk)) .

Taking ∆tk → 0 and assuming appropriate limits exist this yields the stochastic integral
equation

X(t) = X(0) +

∫ t

0

a(s,X(s)) ds+

∫ t

0

b(s,X(s)) dB(s) .
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