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In this note we review the paper ‘Statistical Mechanics of Learning from Examples’
[SST92].

1 Set-up

Let X ∈ Rm be a random variable with unknown distribution X ∼ q(x), and consider a
function g : Rm → R (also not known). Given examplesDn = {(X1, g(X1)), . . . , (Xn, g(Xn))},
where the Xi ∼ q(x) are iid, our goal is to train a neural network to learn the function g.

Consider a neural network f with weights W ∈ Rd. Let ϵ(X|W ) ≥ 0 be a loss function
for f measuring the deviation of f(X|W ) from g(X). For example we could take quadratic
loss:

ϵ(X|W ) = 1
2
(f(X|W )− g(X))2 .

Given a loss function, we define the training energy

E(W ) =
n∑

i=1

ϵ(Xi|W )

and the generalisation function

ϵ(W ) := EX [ϵ(X|W )] =

∫
Rm

ϵ(x|W )q(x)dx .

Training the neural network using (full batch) gradient descent amounts to allowing the
weights W to evolve according to (a discretisation of) the gradient flow of E(W ):

∂W

∂t
= −∇WE(W )

The paper considers a generalisation of this. We consider the weights W evolving accord-
ing to the stochastic differential equation, called the Langevin equation, which is

∂W

∂t
= −∇WE(W )−∇WV (W ) + η(t) (1)

where:

• η(t) is “white noise”, where covariance of η(t) and η(t′) is 2Tδijδ(t− t′). Here T ≥ 0
is the temperature.

• V (W ) represents “possible constraints on the range of weights”. In contrast to
E(W ), V (W ) does not depend on the examples Dn.
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Setting V (W ) = 0 and T = 0 recovers gradient flow dynamics.
We consider the weights W evolving according to (1) in the limit as t → ∞. To be

more precise, we consider a solution Wt to the stochastic differential equation (1) — a
stochastic process — and consider the random variable W obtained by taking the limit
of Wt as t → ∞. This requires some thought: firstly about the existence and uniqueness
of solutions to (1), and secondly about the existence and sense in which the limit of Wt

should be taken. The paper claims that the distribution of such a W is given by the
density function on Rn

pβ(w|Dn) =
1

Zβ
n

e−βE(w) where Zβ
n =

∫
Rd

e−βE(w)φ(w)dw

where β = 1/T and the effect of V (W ) is incorporated into a prior distribution φ(w) on
Rd.

Definition 1. We define the following quantities as functions of the inverse temperature
β and number of training examples n

• The average training error

ϵt(β, n) =
1

n
EDnEW [E(W )]

• The generalisation error
ϵg(β, n) = EDnEW [ϵ(W )]

• The free energy

F (β, n) =
−1

β
EDn [log(Zn)]

• The entropy

S(β, n) = −EDn

∫
Rd

log(pβ(w))pβ(w)φ(w)dw

Connection to singular learning theory

Singular learning theory [Wat09] considers learning in neural networks by considering the
conditional distribution of an ‘output’ random variable Y ∈ Y given an ‘input’ random
variable X ∈ X . One studies a ‘truth-model-prior’ triplet (q(y|x), p(y|x,w), φ(w)), where:

• q(y|x) is the (unknown) true conditional distribution of Y given X.

• p(y|x,w) is the conditional distribution of Y givenX modelled by the neural network
with weights w ∈ W .

• φ(w) is a prior distribution on the weight space W .

The central object of singular learning theory is the Kullback-Leibler divergence of
p(y|x,w) with respect to q(y|x) considered as a function of w:

K(w) =

∫
X×Y

log

(
q(y|x)

p(y|x,w)

)
q(y|x)q(x)dxdy

Given a dataset Dn = {(X1, Y1), . . . , (Xn, Yn)}, one can also consider the so-called empir-
ical Kullback-Leibler divergence

Kn(w) =
1

n

n∑
i=1

log

(
q(Yi|Xi)

p(Yi|Xi, w)

)
.
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One can write the Bayes posterior distribution at inverse temperature β in terms ofKn(w)
as

pβ(w|Dn) =
1

Zn

e−βnKn(w)φ(w)dw where Zβ
n =

∫
W
e−βnKn(w)φ(w)dw .

We define the free energy as F̃ (β, n) = − log(Zn).

Theorem 2 ([Wat09, Main Theorem 6.2]). Given some fairly general conditions, we have
the asymptotic expansion (in probability) of the free energy

F̃ (β, n) = λ log n+ (µ− 1) log log n+Op(1)

where λ and µ are geometric invariants of K(w). Likewise the expected free energy has
the asymptotic expansion

EDn

[
F̃ (β, n)

]
= λ log n+ (µ− 1) log log n+O(1) .

Returning to the setting of [SST92], suppose we take the loss function

ϵ(X|W ) = 1
2
(f(X|W )− g(X))2 .

Given our network f , we define a statistical model

p(y|x,w) = 1√
2π

e
−1
2

(f(x|w)−y)2

and true distribution

q(y|x) = 1√
2π

e
−1
2

(g(x)−y)2 .

Lemma 3. The Kullback-Leibler divergence of the model with respect to the truth is

K(w) =

∫
Rn

1
2
(f(x|w)− g(x))2q(x)dx

and the empirical Kullback-Leibler divergence is

Kn(w) =
1

n

n∑
i=1

1
2
(f(Xi|w)− g(Xi))

2 .

Proof. See [Car21, Lemma A.2].

It follows that:

• The training energy is E(w) = nKn(w).

• The limiting distribution of (1) pβ(w|Dn) coincides with the Bayes posterior distri-
bution, and likewise for Zβ

n .

• The free energy from [SST92] and [Wat09] are related by F (β, n) = 1
β
EDn

[
F̃ (β, n)

]
.

In particular we have the asymptotic expansion

Hence [Wat09, Main Theorem 6.2] gives us (under reasonable assumptions) the asymptotic
expansion

F (β, n) =
λ

β
log(n) +

µ− 1

β
log log n+O( 1

β
) . (2)
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2 Statistical physics of learning

Recall that n is the number of training examples and d is the number of weights in the
network. We define the ratio

α =
n

d
.

The idea behind considering this ratio is that, according to principles from statistical
mechanics, the training energy E(W ) should be extensive. This means that it should be
proportional to the total degrees of freedom d. Since EDnE(W ) = nϵ(W ) this implies
that1 n should be proportional to d. This proportionality constant is α.

2.1 Techniques

This paper considers three methods of approximating the behaviour of the learning sys-
tem: the high temperature limit (or more generally the high temperature expansion),
the annealed approximation, and the replica method. Each of these methods essentially
amounts to using different methods of approximating the free energy.

The high temperature limit The high temperature limit investigates the limiting
behaviour of the system as

α → ∞ β → 0 such that αβ < ∞

Under the high temperature limit it is shown that the distribution pβ(w|Dn) ap-
proaches

p0(w|Dn) =
1

Z0
e−dβα·ϵ(W ) where Z0 =

∫
e−dβαϵ(W )φ(w)dw

That is, the training energy E(W ) is replaced by its average E0 := EDn [E(W )] = n ·
ϵ(W ) = αdϵ(W ). Notice that, if we are using the singular learning theory set up, E0 =
nK(w) and the high temperature limiting distribution given in terms of the KL divergence

p0(w|Dn) =
1

Z0
e−nβK(w) where Z0 =

∫
e−nβK(w)φ(w)dw

At times this has been referred to as the ‘annealed’ distribution.
More generally one can consider the high temperature expansion, which expands the

free energy F as a power series in β of the form

−βF = logZ0 +
∞∑
i=1

βjFj(αβ) .

The high temperature limit is recovered by approximating the free energy by the first
term in the high temperature expansion.

The annealed approximation In the annealed approximation we define the annealed
free energy as

Fan =
−1

β
log

(
EDn

[
Zβ

n

])
Since the logarithm is a convex function we have, by Jensen’s inequality, that Fan ≤ F .
In the annealed approximation we replace the free energy F by the annealed free energy
Fan. In [SST92] it is claimed that the annealed approximation works well in the following
circumstances:
1Assuming ϵ(W ) does not depend on d, which is frequently true in practice.
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• In the limit as β → 0, recovering the high temperature limit discussed above.

• In the limit as α → ∞ and finite β when the learning problem is realisable.

The annealed approximation can be understood as the exact theory for a certain
system where both the weights and examples are both subject to dynamics:

∂W

∂t
= −∇WE(W ) + η(t) ,

∂Xi

∂t
= −∇Xi

E(W ) + ηi(t) .

The replica method In this method the free energy is approximated by

−βF = lim
r→0

1

r
log (EDn [Z

r]) .

Notice that “approximating” the above limit by taking r = 1 recovers the annealed free
energy.

2.2 Results

Using these approximations, [SST92] derives phase transitions in the quantity α in various
models. The most comprehensive and impressive results are for a network with discrete
weights: Wi ∈ {−1, 1} for all 1 ≤ i ≤ d. Under the realisability assumption two critical
values αc(β) and αo(β) are derived:

• For α > αc(β) perfect learning (learning with zero generalisation error) becomes
possible.

• For α > αo(β) ‘metastable’ states vanish. Above this threshold perfect learning
happens quickly.

These results remain valid even at low or zero temperature, and are verified with ex-
periments. Phase diagrams in α and β are given. Similar results are derived for other
networks, and without the realisability assumption.

Another result derived is that, for a “smooth network” (a network with real-valued
weights and error function which is twice differentiable), the average training error and
generalisation error are both O(1/α). This holds for both realisable and unrealisable
learning problems.

Caveat Buried [SST92, Section VII.G] the assumption that the optimal network para-
meters are a discrete set in parameter space. We know that for networks with real-valued
weights this is not the case [Wat09]. It is not immediately clear to me where these assump-
tions come into play. It is mentioned the authors plan to address relaxing this assumption
in a future work.
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Notation dictionary

Description Notation in this note Notation in [SST92]
Input random variable X ∈ Rm S ∈ RM

Input distribution q(x) dµ(S)
Input dimension m M
Rule being learned g : Rm → R σ0 : RM → R
Number of examples n P
Neural network f(X|W ) σ(W;S)
Weights of the neural network W ∈ Rd W ∈ RN

Number of weights d N
Loss function / error function ϵ(X|W ) ϵ(W;S)
Expectation with respect to the training set EDn ⟨⟨ ⟩⟩
Expectation with respect to the weights EW ⟨ ⟩T
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