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Why are we here?

1 The basic set-up

Statistical mechanics is concerned with dynamical systems where we don’t know the
precise state of the system, but we none-the-less want to make statements about the be-
haviour of the system overall. This is usually framed as a distinction between microstates,
which exactly specify our system but we are not able to measure, and macrostates, which
are measurable properties that encapsulate the properties of the system we care about
but do not uniquely determine the state of our system. A typical example is a gas: the
exact state of the system at a given time — the microstate — consists of the positions
and momenta of every particle, while we are only able to observe quantities like pressure,
volume and temperature.

We set things up as follows. For system we consider the set R of all possible states
of that system, which we call phase space. For the purpose of this talk we can take
R = Rn, and in the example of the gas above we have R = R6N where N is the number of
particles (each particle has three position and three momentum coordinates). Our system
is dynamical, meaning it evolves over time, and so any given state of our system x ∈ R
is considered to be a function of time: x := x(t), although time dependence is usually
suppressed from the notation. We denote time derivatives as ẋ = dx

dt
.

To reflect our uncertainty about the true state of the system we represent it as a ran-
dom variable X t (more precisely a sequence of random variables in time). The probability
density of the state of our system at time t is denoted by ρ(x, t).

Definition 1 (Tentative). A statistical mechanical system consists of a phase space R,
dynamics on states x ∈ R, and a sequence of probability densities ρ(x, t) (one for each
t > 0).

Definition 1 is not really a sufficient description of a statistical mechanical system. Of
course there are a number of technical conditions which need to be satisfied (ρ should at
least be a differentiable with respect to t, R should be a manifold (probably smooth) with
a compatible measure... ), but more to the point the dynamics of the system need to be
compatible with the sequence of probability densities. Given any trajectory in phase space
(generated by the dynamics), ρ(x, t) must ‘consistently assign’ probability to a system
following this trajectory. Rather than trying to be more precise now, for the rest of the
talk we will investigate common conditions which are sufficient for ensuring a statistical
mechanical system has this coherence property. Before continuing to this we note one
other common condition imposed on statistical mechanical systems.
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Definition 2. A statistical mechanical system is in equilibrium, or equivalently its density
ρ is stationary, if

∂ρ

∂t
= 0 (1)

Note that even if ρ(x) = ρ(x, t) is stationary it still depends on time via the time-
dependant state x.

2 The continuity equation

One way of ensuring that the probability distributions of the X t are consistent with
respect to the dynamics of the physical system is to assume that there are no sources or
sinks or probability mass in phase space. Formally, this amounts to assuming that the
density ρ(x, t) satisfies a continuity equation. This is the same equation that, for example,
the mass density of a fluid must satisfy to ensure (local) conservation of mass.

We will now derive this continuity equation, following the argument in [PB11, Chapter
2.2]. Let V be a compact region of phase space with non-zero volume with smooth
boundary S = ∂V . The probability that the system is in the region V at time t is given
by the integral

P(X t ∈ V ) =

∫
V

ρ(x, t) dx .

Note that even if ρ is a stationary distribution P(X t ∈ V ) depends on time. We consider
the rate ∂

∂t
P(X t ∈ V ) changes over time. The net flow of probability mass out of V is

given by integrating the probability flux ρẋ over the boundary S. If n̂ is the outward
unit normal of S then this is∫

S

(ρẋ) · n̂ dS =

∫
V

∇ · (ρẋ) dx

by Gauss’s divergence theorem. Since we assume that there are no sources or sinks of
probability mass, any change in P(X t ∈ V ) with time must be as a result of flow into
our out of V . That is,

∂

∂t
P(X t ∈ V ) = −

∫
V

∇ · (ρẋ) dx .

By moving differentiation with respect to t under the integral expression for P(X t ∈ V )
we find ∫

V

∂ρ

∂t
+∇ · (ρẋ) dx = 0

Since this is true of every such region V we obtain

∂ρ

∂t
+∇ · (ρẋ) = 0 (2)

everywhere in phase space, which is the continuity equation for probability mass. Note
that if the system is in equilibrium then satisfying the continuity equation is equivalent
to the probability flux ρẋ being divergence-free.

The continuity equation (2) can be thought of as expressing a strong ‘local’ conserva-
tion property of some quantity whose density is given by ρ. Not only must this quantity
be globally conserved, but it cannot be generated in one part of phase space and destroyed
in equal measure in another. Note that not all physical systems satisfy this property, a
typical example being a system which dissipates energy. In this setting, the probability
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mass of the system accumulates in regions which have lower energy and abandons regions
of higher energy. Hence regions of low energy are sinks of probability mass and regions of
high energy are sources.

Example 1. Consider a ball rolling on the surface z = x2 + y2, whose position at time
t = 0 is drawn from some prior distribution φ on R2. The state of this system is specified
by a coordinate (x, y) ∈ R2. If the ball is subject to friction (i.e. it has a mechanism to
dissipate energy) then as t increases its probability distribution concentrates on the point
(0, 0) in phase space. Hence we expect that (0, 0) is a sink of probability mass.

We will cover such systems in a future talk, but for now we will focus on systems
which satisfy the continuity equation (2).

3 Hamiltonian systems

We will now study a class of physical system, which we call a Hamiltonian system, whose
dynamics are specified by the Hamiltonian equations. Let the phase space be R2n for
some n. A state of the system x = (q,p) consists of two types of coordinates: position
q = (q1, . . . , qn) ∈ Rn and momentum p = (p1, . . . , pn) ∈ Rn. The coordinates qi and pi
are related by a real-valued function H(q,p) of the system state, which in the case of
physical systems is the total energy of the system. The positions and momenta satisfy
the system of partial differential equations

q̇i =
∂

∂pi
H(q,p) ṗi = − ∂

∂qi
H(q,p) for i = 1, . . . , n (3)

solutions to which give the dynamics of the system.
One example of such a system is the gas from earlier: the coordinates (q1, q2, q3) and

(p1, p2, p3) are respectively the position and momentum of the first particle, and so on.
The Hamiltonian H(q,p) is the total energy of the system of particles. If we assume the
particles of the gas do not interact (as is typically done) then this is the sum of the kinetic
and potential energy of each particle.

Suppose that the probability density ρ(q,p, t) of our Hamiltonian system satisfies the
continuity equation (2), which we recall amounts to assuming there are no sources or sinks
of probability mass in phase space. Following [PB11, Chapter 2.2], since ẋ = (q̇, ṗ) we
have that the divergence of ρẋ is

∇ · (ρẋ) =
n∑

i=1

(
∂

∂qi
(ρq̇i) +

∂

∂pi
(ρṗi)

)
=

n∑
i=1

(
∂ρ

∂qi
q̇i + ρ

∂q̇i
∂qi

+
∂ρ

∂pi
ṗi + ρ

∂ṗi
∂pi

)
=

n∑
i=1

(
∂ρ

∂qi
q̇i +

∂ρ

∂pi
ṗi

)
+ ρ

n∑
i=1

(
∂q̇i
∂qi

+
∂ṗi
∂pi

)
Using the Hamilton’s equations (3) we have

∂q̇i
∂qi

=
∂2H(q,p)

∂qi∂pi
= −∂ṗi

∂pi

and so we have

∇ · (ρẋ) =
n∑

i=1

(
∂ρ

∂qi
q̇i +

∂ρ

∂pi
ṗi

)
= {ρ,H}

3



where {ρ,H} is the Poisson bracket

{ρ,H} =
n∑

i=1

(
∂ρ

∂qi

∂H

∂pi
− ∂ρ

∂pi

∂H

∂qi

)
.

Hence from the continuity equation (2) we arrive at the following named result.

Theorem 3 (Liouville’s Theorem1). For a Hamiltonian system, ρ satisfies the continuity
equation (2) if and only if

dρ

dt
=

∂ρ

∂t
+ {ρ,H} = 0 . (4)

Note that two statements are being made here. The fact that ∂ρ
∂t

+ {ρ,H} = 0 follows

from the continuity equation (2) and the working above. The fact that dρ
dt

= ∂ρ
∂t

+ {ρ,H}
is true of any Hamiltonian system and follows from the chain rule

dρ

dt
=

∂ρ

∂t
+ ẋ · (∇ρ)

and by noting that ẋ · (∇ρ) = {ρ,H} by Hamilton’s equations (3).
Equation (4) is (apparently) the equation defining the flow of an incompressible fluid

governed by Hamiltonian H, so Liouville’s Theorem can be interpreted as stating that
the density ρ evolves like a fluid with the same Hamiltonian as the underlying physical
system.

Lemma 4. If the density ρ(q,p, t) depends only on the Hamiltonian H, that is for some
function f : R → [0, 1] we have

ρ(q,p, t) = f(H(q,p))

for all states (q,p) and times t, then ρ is both stationary (satisfies (1)) and satisfies the
continuity equation (2).

Proof. It is clear that under this hypothesis ∂ρ
∂t

= 0 and so it only remains to show that
{ρ,H} = 0. We have

{ρ,H} =
n∑

i=1

(
∂(f ◦H)

∂qi

∂H

∂pi
− ∂(f ◦H)

∂pi

∂H

∂qi

)
= (f ′ ◦H)

n∑
i=1

(
∂H

∂qi

∂H

∂pi
− ∂H

∂pi

∂H

∂qi

)
= 0

by the chain rule.

Lemma 4 shows that many common choices of density ρ automatically result in the
density having a nice relationship with the dynamics of the system. One common choice
of density is the Boltzmann distribution

ρβ(q,p) =
1

Z
e−βH(q,p) , Z =

∫
R2n

e−βH(q,p)dqdp

where β > 0 is a free parameter. The choice of the Boltzmann distribution can be justified
by a maximum entropy argument (which we will look at in more detail in a future talk).

1Mathematically unrelated to Liouville’s Theorem in complex analysis (although both are named after
French mathematician Joseph Liouville) which says that every bounded holomorphic function f : C → C
is necessarily constant.
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