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The concept of entropy first arose in thermodynamics. The modern expression of entropy
was introduced by Ludwig Boltzmann in the proof of what is now known as Boltzmann’s
H-theorem [Bol72]1, where it was shown that the quantity we now call entropy can only
increase as the system evolves over time. This showed that some processes in thermody-
namics are irreversible, albeit under assumptions which were controversial at the time.

Later, in 1948, Claude Shannon introduced entropy to the world of information theory
in the paper [Sha48]. In this work entropy is taken to be a measure of the ‘amount of
uncertainty’ inherent to a probability distribution. More specifically, given a probability
space (Ω,F ,P) and a random variable X : Ω → R, we want to be able to quantify how
uncertain we are about the the value of X(ω) when we do not know ω ∈ Ω. This is
equivalent to quantifying the amount of information about ω that we gain from know-
ing X(ω). From an axiomatic description of such a measurement, Shannon derives an
essentially unique definition of this measurement in the case that X is a discrete random
variable and identifies that it is formally identical to the expression of entropy in statistical
mechanics, which by this time had become widely accepted.

In this note we approach entropy from Shannon’s point of view. In the highly influ-
ential work [Jay57a; Jay57b] it is argued that the conceptions of entropy of Boltzmann
and of Shannon are not just formally the same, but conceptually identical. Readers are
invited to consider statistical mechanics as a form of statistical inference and in the point
of view of [Jay57a; Jay57b] entropy, or more precisely entropy maximisation, plays the
role of a model selection method. It is argued that choosing the distribution on phase
space which maximises the entropy of the system amounts to choosing the distribution
which is “maximally noncommittal with regard to missing information” [Jay57a, p. 620].

1 Entropy of a discrete random variable

We will now derive axioms for a measure of uncertainty in a discrete random variable.
Having done so we will prove that there exists a unique, up to a change of units, way of
measuring this uncertainty. This is [Sha48, Theorem 2].

Before doing so we will elaborate on a comment made in the introduction: that a
measurement of uncertainty in a random variable can equivalently be thought of as a
measurement of the information inherent to a random variable. Let (Ω,F ,P) be a prob-
ability space and recall that we can think of Ω as being the set of possible outcomes of
some random experiment. We are highly uncertain about a (discrete) random variable
X : Ω → R if it takes many different values with similar probabilities. That is, for any2

x ∈ suppX we have that P(X = x) is reasonably small. This precisely means that if we
know X(ω) = x, the region of Ω in which ω must reside X−1(x) = {ω ∈ Ω | X(ω) = x}
1An English translation is available in [Bol03].
2For any x ∈ R with P(X = x) > 0.
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is a small part of Ω as measured by P. In other words, for a random variable with a
high amount of uncertainty knowing that X = x tells as a lot about the outcome of the
random experiment, compared to a random variable with a low amount of uncertainty.

Now let us consider axioms for this measurement of uncertainty. If X is a discrete
random variable let H(X) denote the amount of uncertainty we have about X:

• If a random variable X takes many different values each with similar probabilities
then there is more uncertainty in X compared to a random variable Y taking fewer
values. Precisely, if X takes N values each with probability 1/N and Y takes M
values each with probability 1/M , if M < N then H(Y ) < H(X).

• We should not be able to change the amount of uncertainty by changing how we en-
code random variables. By way of an example, supposeX takes the values {1, 2, 3, 4}
each with probability 1/4. This could be encoded as two random variables: a ran-
dom variable Y which takes the value 0 when X ∈ {1, 2} and the value 1 when
X ∈ {3, 4}, and a random variable Z conditionally dependent on Y . When Y = 0
then Z = 0 when X = 1 and Z = 1 when X = 2, and likewise for Y = 1:

The expression we arrive at is that

H(X) = H(Y ) +P(Y = 0)H(Z|Y = 0) +P(Y = 1)H(Z|Y = 1)

where H(Z|Y = i) the uncertainty in the conditional distribution of Z given Y = i,
which in this case is the uniform distribution on two choices.

It turns out that these two assumptions, along with a continuity assumption, are all
we need to uniquely specify H. Before proceeding to the proof of this theorem we need
the following result:

Lemma 1 ([Sha48, Appendix 2]). Let A : N>0 → R be a monotonic increasing function
satisfying

A(n) + A(m) = A(nm) (1.1)

for all n,m ∈ N>0. Then A(n) = K log(n) for all n, for some fixed K > 0.

Proof. See Section 4.

Let ∆N = {(p1, . . . , pN) ∈ (0, 1)N |
∑N

i=1 pi = 1} be the set of all probability distri-
butions whose support has cardinality N and ∆ =

⋃∞
N=1 ∆

N the set of all probability
distributions with finite support.
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Theorem 2 ([Sha48, Theorem 2]). Let H : ∆ → R be a function satisfying the following
three properties:

(1) H is continuous.

(2) The function A(N) = H( 1
N
, . . . , 1

N
) is a monotonic increasing function of N .

(3) Given (p1, . . . , pN) ∈ ∆ we can consider the distribution obtained by grouping the
first n1 events together, the next n2, and so on up to nM where n1+n2+ · · ·+nM =
N . This distribution is given by (q1, . . . , qM) ∈ ∆, where q1 = p1 + · · · + pn1,
q2 = pn1+1 + · · ·+ pn1+n2 and so on. Then

H(p1, . . . , pN) = H(q1, . . . , qM) + q1H(p1
q1
, . . . ,

pn1

q1
) + q2H(

pn1+1

q2
, . . . ,

pn1+n2

q2
) + · · · .

Then H is necessarily of the form

H(p1, . . . , pN) = −K

N∑
i=1

pi log(pi) (1.2)

for all (p1, . . . , pN) ∈ ∆, where K > 0 is fixed.

Proof. Suppose that H satisfies the above conditions (1 − 3). Since H is continuous it
suffices to show that (1.2) holds when p1, . . . , pN are rational numbers. Let n1, . . . , nN ∈ N
and set pi = ni/

∑N
i=1 ni. Due to (3), we have that

H(p1, . . . , pN) +
N∑
i=1

piA(ni) = A(
∑N

i=1 ni) . (1.3)

To explain how this follows from (3) consider the distribution on
∑N

i=1 ni choices, where

each choice is equally likely. The entropy of this distribution is A(
∑N

i=1 ni). Our original
distribution (p1, . . . , pN) is obtained by grouping the first n1 events together into an event
with probability p1 = n1/

∑N
i=1 ni, the next n2 into an event with probability p2, and so

on. Applying assumption (3) yields (1.3).
Hence it suffices to determine A(n) for all integers n. Let n,m ∈ N and consider the

uniform distribution on nm choices, whose entropy is given by A(nm). By grouping these
choices into n events of equal probability 1/m and applying (3) again we find that A must
satisfy

A(nm) = A(n) + A(m) .

By Lemma 1 it must be the case that A(n) = K log n for all n ∈ N, for some fixed K > 0.
Then from (1.3) we find that

H(p1, . . . , pN) = K log(
∑N

j=1 nj)−K

N∑
i=1

pi log(ni)

= K

N∑
i=1

pi log(
∑N

j=1 nj)−K

N∑
i=1

pi log(ni)

= K
N∑
i=1

pi log(
∑N

j=1 nj/ni)

= −K
N∑
i=1

pi log(pi)

as required. It is straightforward to check that the expression (1.2) does indeed satisfy
conditions (1− 3).
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2 Entropy maximisation

Suppose we have a set of candidate distributions for which to model our system, all of
which are compatible with our partial knowledge the system. It is argued in [Jay57a] that,
since entropy is a measurement of the uncertainty inherent to a probability distribution,
we should choose the one with maximal entropy. Choosing a distribution which does not
maximise entropy, it is argued, amounts to introducing additional assumptions which are
not based on our knowledge of the system. In this section we find the maximal entropy
distribution in the case we know the expected value of some function.

Consider ∆N as probability distributions on the N -set X = {x1, . . . , xN}, meaning
we identify p = (p1, . . . , pN) ∈ ∆N with a random variable Xp such that Xp = xi with
probability pi for all i = 1, . . . , N .

Theorem 3. For some function f : X → R not identically zero and F ∈ R we consider
the distributions p = (p1, . . . , pN) ∈ ∆N such that Ef(Xp) = F . That is

F =
N∑
i=1

pif(xi) . (2.1)

Of the distributions satisfying (2.1), the one with maximal entropy is the Boltzmann dis-
tribution on N-symbols. That is, for each i = 1, . . . , N

pi =
1

Z
e−βf(xi) where Z =

N∑
j=1

e−βf(xj)

for some β.

Proof. We wish to maximise the entropy

H(p) = −
N∑
i=1

pi log(pi)

subject to the constraints

N∑
i=1

pi = 1 and
N∑
i=1

pif(xi) = F .

Since f is not identically zero we can use the method of Lagrange multipliers. Set

L = −
N∑
i=1

pi log pi + α(1−
N∑
i=1

pi) + β(F −
N∑
i=1

pif(xi))

for some α, β ∈ R. We have

∂L

∂pi
= − log(pi)− 1− α− βf(xi)

and setting ∂L
∂pi

= 0 and solving for pi gives

pi =
e−βf(xi)

e1+α

Set Z = e1+α. Since
∑

i=1 pi = 1 we have that

Z =
N∑
j=1

e−βf(xj)
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Theorem 3 can be extended to the case of multiple constraints. If we have f1, . . . , fK :
X → R and F1, . . . , FK ∈ R such that

Fk =
K∑
i=1

pifk(xi) for all k = 1, . . . , K

then one can show using the same method that the choice of p1, . . . , pN with maximal
entropy is

pi =
1

Z
e−

∑K
k=1 βkfk(xi) where Z =

N∑
j=1

e−
∑K

k=1 βkfk(xj)

for some β1, . . . , βK .

3 Continuous distributions

Up until now we have been working only with probability distributions that have fi-
nite support. Note that the entropy of a discrete random variable X is the expectation
E log(p(X)) where p(x) is the probability mass function of X. This suggests the following
definition:

Definition 4. Let Y be a continuous random variable and p(y) its probability density
function. The differential entropy of Y is

H(Y ) = E log(p(Y )) =

∫
Y
p(y) log(p(y))dy .

Differential entropy was also defined in [Sha48, Section 20], however unlike the discrete
case no justification was given. An alternative is looking at the relative entropy to some
fixed distribution φ(y), also known as as Kullback-Leibler divergence:

KL(Y |φ) =
∫
Y
p(y) log(p(y)/φ(y))dy

From the relative entropy one can define the Boltzmann distribution in the continuous
case in the obvious way:

p(y) =
1

Z
e−βf(y) Z =

∫
Y
e−βf(y)φ(y)dy

Justification of these definitions will be deferred to a future note.

4 Proof Lemma 1

We now prove Lemma 1, following the proof in [Sha48, Appendix 2]. First note that by
substituting n = m = 1 into (1.1) we have A(1) = 0, and so since A is monotonically
increasing A(n) > 0 for any n ̸= 1.

Let t, s ∈ N>0 where s > t > 1. We first aim to show that A(s)
A(t)

= log(s)
log(t)

. Let n ∈ N be
arbitrary and choose m ∈ N sufficiently large so that

sm ≤ t2n < sm+1 (4.1)
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Taking logarithms and then dividing by 2n log(s) gives

m

2n
≤ log(t)

log(s)
<

m

2n
+

1

2n
. (4.2)

Now, by (1.1) we have that A(sm) = mA(s) and A(t2n) = 2nA(t) and so by applying A
to (4.1) and dividing by 2nA(s) we find

m

2n
≤ A(t)

A(s)
<

m

2n
+

1

2n
(4.3)

where we have also used the fact that A is monotonically increasing. From (4.2) and (4.3)
we have ∣∣∣∣ log(t)log(s)

− m

2n

∣∣∣∣ < 1

2n
and

∣∣∣∣A(t)A(s)
− m

2n

∣∣∣∣ < 1

2n

and so ∣∣∣∣ log(t)log(s)
− A(t)

A(s)

∣∣∣∣ ≤ ∣∣∣∣ log(t)log(s)
− m

2n

∣∣∣∣+ ∣∣∣∣ log(t)log(s)
− m

2n

∣∣∣∣ < 1

n
.

Since this holds for all n we have log(t)
log(s)

= A(t)
A(s)

.

To complete the proof, let Kt and Ks be such that A(s) = Ks log(s) and A(t) =

Kt log(t). From log(t)
log(s)

= A(t)
A(s)

we find Kt = Ks. This holds for any s > t > 1 and so we

have A(n) = K log(n) for any n > 1, for some fixed K ∈ R. That K > 0 follows from A
being monotonically increasing, and we have already seen that A(1) = K log(1) = 0.
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