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Throughout we consider a probability distribution π on Rd. We assume that π is absolutely
continuous with respect to the Lebesgue measure, and that it is non-zero everywhere and differ-
entiable (so that∇ log π(x) is well-defined). In the context of local learning coefficient estimation
[Lau+24] π is the tempered posterior distribution

π(w) ∝ φ(w)

n∏
i=1

p(Yi | w)β = φ(w) exp(−βnLn(w))

where p(y | w) is a statistical model, φ(w) the prior, {Y1, . . . , Yn} an iid dataset, β > 0 a fixed
parameter and Ln(w) the empirical negative log-likelihood.

1 Continuous-time Langevin dynamics

Given the distribution π, the corresponding Langevin diffusion is the stochastic differential
equation (SDE)

dXt =
1
2∇ log π(Xt)dt+ dWt (1.1)

where Wt is standard Brownian motion. A solution Xt to (1.1) is a continuous-time stochastic
which satisfies a corresponding integral equation1.

The SDE (1.1) is an example of a time-homogeneous Itô diffusion (see [Øks13, Chapter 7]).
In particular this means that a solution Xt is a Markov process — a stochastic process where
the behavior depends only on the current state (and not the history of the process). For any
Markov process Xt we can define a family of probability measures

P t
X(x,A) = P(Xt ∈ A | X0 = x)

which describe the distribution of Xt at time t, starting at x.

Definition 1. The stationary distribution of a Markov process Xt is a probability measure ν
satisfying

ν(A) =

∫
P t
X(x,A)dν(x)

for all measurable sets A and times t > 0.

Theorem 2 (see [RT96, Theorem 2.1]). Suppose that ∇ log π(x) is continuously differentiable
and that for some M,a, b ∈ R we have

∇ log π(x) · x ≤ a∥x∥2 + b for all ∥x∥ > M (1.2)

Then a solution to (1.1) Xt:

• is non-explosive (does not reach infinity in finite time) and has a number of other nice
properties.

1For precise definitions see [Øks13] or my talk [Hit23].
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• has π as its stationary distribution and for all x ∈ Rd

∥P t
X(x, ·)− π∥ → 0 as t → ∞

where ∥µ− ν∥ = 1
2 supA |µ(A)− ν(A)| is the total variation norm.

The proof of [RT96, Theorem 2.1] seems standard, but relies on a lot of general results about
Markov processes and Itô diffusions which require some work to understand. There are a lot of
books about Markov processes:

• [Øks13] has a good introduction to diffusion processes but is not quite advanced enough.

• [EK05] and [RW00b; RW00a] are comprehensive but written as reference texts.

• [IW11] (particularly Chapter 5.4) has a good account of diffusion processes on manifolds
not present in the above. It was written much earlier than the other books (by students
of Itô!).

• [MT09] focuses on discrete-time Markov processes, which is useful when considering dis-
cretisations of (1.1).

1.1 The generator of a Markov process

We now take a brief digression to discuss the generator of a Markov process. Since we aren’t
giving any proofs we won’t actually use what follows in this talk, but these ideas are essential
in proving Theorem 2 and that SGLD samples from π under certain conditions in [TTV15,
Theorem 7].

Let Xt be a time-homogeneous Markov process and assume x 7→ P t
X(x,A) is measurable

for all A (this is true of any diffusion process). Let B(Rd) be the set of bounded measurable
functions Rd → R (a Banach space). Associated to Xt, we define a family (P t

X)t≥0 of bounded
linear operators on B(Rd) by

(P t
Xf)(x) = E[f(Xt) | X0 = x] where f ∈ B(Rd), x ∈ Rd .

This is called the transition semigroup of Xt. Note that the measure P t
X(x, ·) can be identified

with a linear functional B(Rd) → R by taking expectations. Reformulating x 7→ P t
X(x, ·) by

currying gives us the family of operators above. That P t
Xf ∈ B(Rd) follows from the fact P t

X(x, ·)
is a probability measure and the assumption that x 7→ P t

X(x,A) is measurable.

Definition 3. The generator of (Pt)t≥0 is an operator defined by the limit

(Af)(x) := lim
t→0

(P t
Xf)(x)− f(x)

t
. (1.3)

Let D(A) be the set of all functions f : Rd → R for which the limit (1.3) exists. We consider

A : D(A) → RRd
.

For any time-homogeneous Itô diffusion we have an expression for its generator as a differen-
tial operator depending on the coefficients of the SDE [Øks13, Theorem 7.3.3]. For the Langevin
diffusion we have

(Af)(x) = 1
2∇ log π(x) · ∇f(x) +∇2f(x)

where ∇2 is the Laplacian.
When we restrict ourselves to nice classes of Markov processes, the generator uniquely char-

acterises the process. This provides a nice way of defining diffusion processes on Riemannian
manifolds, which come equipped with a notion of ∇ and ∇2 (see [IW11, Chapter 5.4]).

The generator is practically useful for proving things, for example it can be used to charac-
terise the stationary distribution of the process. If Xt is a Markov process and A is its generator
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then there is a class of functions C such that the following statement holds. A probability
measure ν is the stationary distribution of Xt if and only if

ν(Af) = 0

for all f ∈ C. For example, when Xt is a non-explosive diffusion a suitable class C is the set of
all twice continuously differentiable functions.

2 Discretisations of Langevin dynamics

Theorem 2 suggests that a discretisation of Langevin dynamics could be used to sample from
π(x). The obvious approach

xk+1 = xk +∆xk where ∆xk = ϵ
2∇ log π(xk) +

√
ϵηk (2.1)

where ϵ > 0 is the step size and (ηk)k≥0 is an iid sequence of standard normal random variables.
This was first suggested as a sampling method in [Par81] and is now known as the Unadjusted
Langevin Algorithm (ULA). Note that (2.1) is very similar to SGLD, except that we assume we
have access to the true gradient rather than an estimator.

2.1 Issues with the nav̈e approach

Unfortunately ULA can fail for reasons relating to the tails of π(x). The failure modes of ULA
are discussed in detail in [RT96, Section 3]; here we present the results relevant for singular
models. Consider the Markov chain (xk)k≥0 generated via (2.1) and for simplicity suppose
xk ∈ R. Their analysis of ULA is organised around the limits

S+
a :=

ϵ

2
lim
x→∞

∇ log π(x) · x−a (2.2)

S−
a :=

ϵ

2
lim
x→∞

∇ log π(x) · |x|−a (2.3)

each defined for fixed a ∈ R. We paraphrase [RT96, Theorem 3.2] as follows.

Lemma 4. Let K be any compact neighborhood of the origin. Then the number of times (xk)k≥0

visits K is finite with positive probability if either of the following conditions hold:

• For some a > 1 both S+
a < 0 and S−

a > 0 exist.

• For a = 1 both S+
a < −2 and S−

a > 2 exist.

Proof. We give a sketch as follows, see [RT96, Theorem 3.2]. Suppose x > 0 is large, so that

S+
a ≈ ϵ

2
lim
x→∞

∇ log π(x) · x−a

Then, under the update rule (2.1) the next expected position x′ is approximately x′ ≈ x+ S+
a .

If a = 1 then we have
x′ ≈ x(1 + S+

a )

if S+
a < −2 then x′ < −x. The same holds for the next step, replacing S+

a by S−
a and so we

get oscillation between increasingly extreme values of x. A similar argument holds for a > 1.
That we eventually arrive at a sufficiently large value of x follows essentially from the fact that
Brownian motion is ergodic.

Example 5. Consider π(x) ∝ exp(−γx2b) for b ∈ N, γ > 0. We have

∇ log π(x) = −2γbx2b−1

and
S+
a = ϵ

2 lim
x→∞

∇ log π(x)x−a = −ϵγb lim
x→∞

x2b−1−a .

Note that S+
a < 0 if and only if 2b−1−a = 0. Thus if 2b ≥ 4 (i.e. log π(x) has a non-degenerate

critical point) then a ≥ 3 and ULA will fail to sample from π(x) by Lemma 4.
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Example 5 shows a situation where using ULA to sample from distributions for which log π(x)
has degenerate critical points will result in the sampling chain diverging to infinity. This happens
because the discretisation errors versus (1.1) accumulate. Rather than arising directly from the
degenerate critical point, this occurs because these distributions have lighter-than-Guassian tails.
The gradient ∇ log π(x) grows very large in the tails, and this causes divergence.

[RT96] discuss the Metropolis Adjusted Langevin Algorithm (MALA), which combines Langevin
dynamics with a proposal-acceptance mechanism as in the random walk Metropolis-Hastings al-
gorithm. The ULA update (2.1) is used to generate a proposal, which is then accepted (the
proposal is taken as a step) or rejected (a new proposal is generated) with a certain probability
(see [RT96, p. 1.4.2]). The convergence of MALA is discussed in-detail in [RT96].

2.2 Stochastic Gradient Langevin Dynamics (SGLD)

Stochastic Gradient Langevin Dynamics (SGLD) uses the same update rule as ULA, except
that a stochastic estimator of ∇ log π(x) is used in place of the true gradient. That is, a Markov
chain is generated as

xk+1 = xk +∆xk where ∆xk =
ϵk
2
g(xk, Uk) +

√
ϵkηk (2.4)

where g(xk, Uk) is an unbiased estimator of the gradient, (Uk)k≥0 are iid random variables which
contribute to the estimator g(xk, Uk), (ϵk)k≥0 is a sequence of step sizes (in the simplest case we
would take ϵk = ϵ0), and (ηk)k≥0 is a sequence of iid standard normal random variables.

The typical example of g(xk, Uk) is using a minibatch estimate of the gradient when π(w) ∝
φ(w) exp(−βnLn(w)). In this case

∇ log π(w) = logφ(w)− nβ∇Ln(w) ≈ ∇ logφ(w)− β
n

m

m∑
i=1

∇ log p(Yui | w) =: g(w,U)

where U = (u1, . . . , um) are random indices into the dataset.
SGLD was first proposed in [WT11] and its properties are analysed in [TTV15; VZT15].

Here we focus on [TTV15], which gives conditions for convergence to π(x) in the situation
where ϵk ↓ 0. In [VZT15] the behavior at finite k for step size is considered under the same
conditions.

Assumption 1 ([TTV15, Assumption 1]). We assume that the sequence of step sizes (ϵk)k≥0 is

decreasing and ϵk → 0 as k → ∞ (i.e. ϵk ↓ 0) and that Tk → ∞ as k → ∞, where Tk =
∑k

i=0 ϵi.

Assumption 2 ([TTV15, Assumption 4]). We assume that the distribution π(x) and the un-
biased gradient estimator g(x, U) jointly satisfy the following. We assume that there exists a
twice-differentiable function V : Rd → [1,∞) such that V (x) → ∞ as ∥x∥ → ∞ and V (x) has
bounded second derivatives.

(1) There exist pH ≥ 2 and C1 > 0 such that

E
[
∥g(x, U)−∇ log π(x)∥2pH

]
≤ C1V (x)pH ∀x ∈ Rd

(2) There exists C2 > 0

∥∇V (x)∥2 + ∥∇ log π(x)∥2 ≤ C2V (x) ∀x ∈ Rd

(3) There exist a, b > 0 such that

1
2∇V (x) · ∇ log π(x) ≤ −aV (x) + b ∀x ∈ Rd
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Theorem 6 ([TTV15, Theorem 7]). Suppose that Assumption 1 and Assumption 2 hold. Define

πk(f) =
1

Tk

k∑
i=1

ϵif(xi) for f : Rd → R

where Tk =
∑k

i=1 and (xk)k≥0 is sampling chain generated by SGLD (2.4) (note that this defines
a probability distribution). Then πk converges in distribution to π almost surely.

Remark. On Theorem 6:

• Convergence in distribution tells us that πk(f) → π(f) as k → ∞ only for bounded
functions. In [TTV15] this is shown to hold for a larger class of functions determined
by the exponent pH and function V in Assumption 2.

• We say that πk converges in distribution to π almost surely because the sampling chain
depends on the random variables (Uk)k≥0 and (ηk)k≥0.

• [CDC15] proves essentially the same result using a different method which applies to a
wider range of samplers. They explain in [CDC15, Appendix 1] that these assumptions
entail Assumption 2.

2.2.1 Issues with singular models

For singular models there is a problematic interaction between the fact that V must have
bounded second derivatives and condition (2) in Assumption 2. We give a negative result
for deep linear networks in Lemma 8, and a similar result can be shown for class of distributions
discussed in Example 5.

Lemma 7. Suppose that V : Rd → R has bounded second derivatives. Then there exists a
polynomial function P : Rd → R of at most degree two such that V (x) ≤ P (x) for all x ∈ Rd.

Proof. We prove this in the case of d = 1, with the higher dimensional case being identical.
There exists A ∈ R such that

V ′′(x) ≤ A

for all x ∈ R. Integrating both sides twice gives us V ′′(x) ≤ 1
2Ax

2 +Bx+ C.

Lemma 8. Let F (y, w) be a deep linear network, where y is the input variable and w is weights.
Let Y1, . . . , Yn be a dataset drawn iid from a distribution q(y). We consider the distribution

π(w) ∝ exp(−nL(w)) where L(w) =

∫
∥F (y, w)− F (y, w0)∥2q(y)dy

for some fixed weight w0. Suppose that Assumption 2 holds of π(w). Then F (y, w) has at most
two layers.

Proof. Let P =
∏L

ℓ=1 Pℓ be the deep linear network, where P1, . . . , PL are compatible matrices.
That is, we take w = (P1, . . . , PL) and F (y, w) = Py for all y ∈ RN .

We treat each parameter in weight space as a different polynomial variable. That is, we have
Pℓ = (wℓ

ij) where wℓ
ij are distinct polynomial variables. For a matrix Q by deg(Q) we mean to

take the maximum degree of its entries. Then we have deg(P ) = L since each entry is a sum of

monomials of the form
∏L

ℓ=1w
(ℓ)
iℓjℓ

. This implies that (assuming absolute continuity of q(y))

L(w) =

∫
∥Py − P (0)y∥2q(y)dy

has degree degL(w) = 2L, where P (0) is the true parameter matrix. It follows that deg ∥∇L(w)∥2 =
2L− 2.

From (2) in Assumption 2 and Lemma 7 we have

∥∇L(w)∥2 ≤ h(w)

where h(w) is a degree two polynomial. This implies that deg ∥∇L(w)∥ ≤ 2 and so L ≤ 2.
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3 Discussion

So where does this leave us? On one hand, the assumptions needed to prove that SGLD can
sample from a distribution π(x) using the method in [TTV15], and [RT96] tells us we shouldn’t
expect SGLD to be well-behaved for singular distributions (or at least for distributions with
light tails, which coincide with singular distributions in certain simple classes). On the other,
we have empirical evidence [Lau+24] that SGLD can sample well enough to accurately estimate
the local learning coefficient of deep linear networks.

Option 1: the tails are actually not too light

The tails of distributions arising from deep linear networks and neural networks are not too
light and Example 5 does not apply. In light of Lemma 8 this still leaves open the question of
why SGLD works in deep linear networks, as we show that Assumption 2 cannot apply to non-
trivial deep linear networks. Given that the loss function of the deep linear network discussed
in Lemma 8 is a polynomial, this seems implausible.

Option 2: gradient noise stabilizes SGLD

Consider the gradient noise E(x) = g(x, U)−∇ log π(x). There are experiments [Şim+19; SSG19;
BL23] which seem to suggest the distribution of E(x) is heavy-tailed. These works assume a
symmetric heavy tailed distribution but don’t seem to investigate the claim of symmetry.

We know that EE(x) = 0, but this does not rule out that E(x) is asymmetric in the sense
of heavy negatively-skewed tail (in each coordinate). That is, extreme underestimates of the
gradient are ‘more likely than normal’. Going further, if ∇ log π(x) being large causes E(x) to
be more likely to produce an extreme negative value then this could help stabilize SGLD.

Option 3: SGLD chains do diverge (eventually)

Every SGLD chain will eventually diverge almost surely, but at a finite number of steps we
can still get useful approximations to the posterior distribution. Perhaps singularities cause a
kind of metastability in the SGLD chain which means expected divergence time is very large.
Probabilistically, the correct tool to analyse the finite-time behavior of such ‘metastable’ Markov
processes would seem to be quasi-stationary distributions [CMS13].

3.1 Addendum

At the end of writing this talk I found several papers [RRT17; Xu+20; TLR18; ZLC18] coming
at SGLD though the lens of statistical optimization. They are concerned with proving that
SGLD finds a global minimum of empirical or population risk, or proving it escapes from local
minima. Without regularity assumptions, it is a little difficult to see how this is compatible with
Example 5. I have only read the papers briefly, but from what I can see:

• [TLR18] explicitly assumes a non-degenerate global minimum or a Morse condition (see
the start of Section 2.1 and Theorem 3).

• [ZLC18] assumes the objective function or its gradients are bounded, but it looks like this
analysis is concerned with escape from a local neighborhood. This may be compatible
with Example 5.

• I’m unsure exactly what (if any) regularity assumptions are made in [RRT17; Xu+20],
though in these papers the spectral gap of the generator (Definition 3) is non-zero. I believe
this constitutes a kind of regularity condition, though I am not sure what justification they
provide for this.
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