The Empirical Process in SLT

Rohan Hitchcock

Introduction

The Empirical Process in SLT

• The empirical process $\psi_n(w)$ controls the difference between the true and empirical KL-divergence of a model.

• Recall
$$K(w) = \mathbf{E}[f(X, w)]$$
 and $K_n(w) = \frac{1}{n} \sum_{i=1}^n f(X_i, w)$ where $f(x, w) = -\log \frac{p(x | w)}{q(x)}$.

• We define
$$\psi_n(w) = \frac{1}{\sqrt{n}} \sum_{i=1}^n \frac{K(w) - f(X_i, w)}{\sqrt{K(w)}}$$
 so that:

$$K_n(w) = K(w) - \sqrt{K(w)/n} \psi_n(w)$$

• Also consider an empirical process $\xi_n(u)$ on the resolution:

$$K_n(g(u)) = u^{2k} - \frac{1}{\sqrt{n}} u^k \xi_n(u)$$

• Proofs of (e.g.) the Free Energy Formula require establishing some kind of convergence $\psi_n(w) \to \psi(w)$ and $\xi_n(u) \to \xi(u)$.

Goal for this talk

- Understand convergence of sequences of random functions like $\psi_n(w)$ and $\xi_n(u)$.
- This is the main focus of the Grey Book Chapter 5.
- I am to clarify some confusing aspects of that chapter.
- We are focused on real-valued functions on compact spaces with the supremum norm topology.

Set-up

- Consider continuous $f: \mathbb{R}^N \times W \to \mathbb{R}$, where $W \subseteq \mathbb{R}^d$ is compact.
- Fix a probability distribution q(x) on \mathbb{R}^N and iid $X_1, X_2, \ldots \sim q(x)$.
- Define a sequence of (random) functions

$$\psi_n(w) = \frac{1}{\sqrt{n}} \sum_{i=1}^n (f(X_i, w) - \mathbf{E}f(X_i, w))$$

Goal: Prove, in some suitable sense, " $\psi_n(w) \to \psi(w)$ as $n \to \infty$ ", where $\psi(w)$ is continuous.

Background

Function-valued random variables

- · We are concerned with function-valued random variables.
- Two measurable spaces:
 - All functions $W \to \mathbb{R}$, denoted \mathbb{R}^W , with the *cylindrical* σ -algebra \mathscr{B}_{cyl}
 - $(\mathscr{B}_{\text{cyl}})$ is the smallest σ -algebra s.t. all projections $\pi: \mathbb{R}^W \to \mathbb{R}^F$, $F \subseteq W$ finite are measurable).
 - \mathscr{B}_{cyl} is "coarse": it is "easy" to find distributions on $(\mathbb{R}^W, \mathscr{B}_{\text{cyl}})$, but \mathscr{B}_{cyl} doesn't specify many interesting properties.
 - Continuous functions $W \to \mathbb{R}$, denoted $C = Cts(W, \mathbb{R})$, with the Borel σ -algebra \mathscr{B}
 - (\mathscr{B} is the smallest σ -algebra s.t. all open sets of C are measurable).
 - \mathscr{B} is "compatible with the sup-norm topology on C"

Two important theorems

Kolmogorov's Extension Theorem: Given probability measures Ψ_F on each \mathbb{R}^F where $F \subseteq W$ is finite, can be used to prove that there exists a measure Ψ on $(\mathbb{R}^W, \mathscr{B}_{\text{cvl}})$ such that the pushforward to any \mathbb{R}^F is Ψ_F .

- To construct a random function ψ :
 - Define the intended joint distribution of $(\psi(w_1), ..., \psi(w_k))$ for all finite subsets $\{w_1, ..., w_k\} \subseteq W$.
 - Kolmogorov gives you a random variable ψ on $(\mathbb{R}^W, \mathscr{B}_{\text{cyl}})$ with the desired finite projections.
 - See Grey Book, Remark 5.6.

Two important theorems

Prohorov's Theorem: Given a sequence Ψ_n of probability measures on (C, \mathcal{B}) , can be used to show convergence in distribution $\Psi_n \to \Psi$ to another probability measure Ψ on (C, \mathcal{B}) .

- To construct a random function ψ :
 - Define continuous random functions ψ_n .
 - Show the sequence converges.

Aside: Constructing Brownian motion

- Want a continuous random function $B:[0,\infty)\to\mathbb{R}$ with independent normal increments $B_{t+\Delta t}-B_t\sim\mathcal{N}(0,\Delta t)$.
- Kolmogorov's Extension Theorem:

 $Cts([0,\infty), \mathbb{R}) \notin \mathcal{B}_{cyl}!$ $\rightarrow Show \beta(Cts(\mathbb{R})) = 1$

Show $B \sim \beta$ possesses an 'a.s. continuous modification'

Define distributions on \mathbb{R}^F Kolmogorov Obtain distribution β on $\mathbb{R}^{[0,\infty)}$ Show $\beta(Cts)$ ∞), \mathbb{R}) = 1

Show $B \sim \beta$ possesses an

• Prohorov's Theorem:

Define cts, finite time, approximations $B_n \in Cts([0,1], \mathbb{R})$

Obtain finite time cts Brownian motion on $Cts([0,1],\mathbb{R})$

Glue copies into a process with sample paths in $Cts([0,\infty), \mathbb{R})$

Sketching convergence $\psi_n \to \psi$

Reminder

- $W \subseteq \mathbb{R}^d$ compact.
- Continuous $f: \mathbb{R}^N \times W \to \mathbb{R}$.
- $C = Cts(W, \mathbb{R})$ and \mathscr{B} the Borel σ -algebra.
- q(x) a pdf on \mathbb{R}^N
- $X_1, X_2, ... \sim q(x)$ iid.
- C-valued random variables:

$$\psi_n(w) = \frac{1}{\sqrt{n}} \sum_{i=1}^n (f(X_i, w) - \mathbf{E}f(X_i, w))$$

Goal: Prove $\psi_n(w) \to \psi(w)$ in distribution on (C, \mathcal{B}) , for some C-valued $\psi(w)$.

Tightness and Prohorov's Theorem

Let Ψ_n be a sequence of probability measures on (C, \mathcal{B}) .

Definition: We say Ψ_n is *tight* if for every $\epsilon > 0$ there exists a compact $K \subseteq C$ such that $\Psi_n(K) > 1 - \epsilon$ for all n.

A sequence of C-valued random variables ψ_n is *tight* if the corresponding distributions $\Psi_n(A) = \mathbf{P}(\psi_n \in A)$ are tight.

Prohorov's Theorem: Suppose W is compact and ψ_n is tight. Then ψ_n converges in distribution to some C-valued random variable ψ if and only if every finite projection $(\psi_n(w_1), \ldots, \psi_n(w_k))$ converges in distribution as $n \to \infty$.

(Really, this is a corollary of Prohorov's Theorem, which is about relating tightness and relative compactness.)

Compactness in C

- So it suffices to show ψ_n is tight.
- How do we show subsets of C are compact? (closed balls are not compact!)

Arzelà-Ascoli Theorem: Let $W \subseteq \mathbb{R}^d$ be compact. A subset $F \subseteq C$ has compact closure if and only if:

- 1. *F* is *uniformly bounded*: there exists M > 0 such that $\sup_{w \in W} f(w) < M$ for all $f \in F$
- **2.** *F* is *equicontinuous*: for every $\epsilon > 0$ there exists $\delta > 0$ such that for all $f \in F$

$$\sup_{\|w-w'\| \le \delta} |f(w) - f(w')| < \epsilon$$

Only uniform boundedness is discussed in the Grey Book's convergence proof.

$L^{s}(q)$ -valued real analytic functions

• For $s \ge 1$, consider the Banach space $L^s(q)$ of functions $h: \mathbb{R}^N \to \mathbb{R}$ which satisfy

$$\int |h(x)| q(x) dx < \infty$$

Definition: We say $f: \mathbb{R}^N \times W \to \mathbb{R}$ is an $L^s(q)$ -valued real analytic function if for any $w^* \in W$ there exist coefficient functions $a_{\alpha}(x) \in L^s(q)$ indexed by $\alpha \in \mathbb{N}^d$ such that

$$f(x, w) = \sum_{\alpha \in \mathbb{N}^d} a_{\alpha}(x)(w - w^*)^{\alpha}$$

for all $w \in W'$ where W' is an open nbhd of w^* . Here, the RHS is required to converge absolutely in $L^s(q)$ for all $w \in W'$. This means that

$$\sum_{\alpha \in \mathbb{N}^d} \|a_\alpha\|_s |w - w^*| < \infty$$

for all $w \in W'$.

Lemma for uniform boundedness

Lemma (Grey Book Theorem 5.8): Suppose W is compact. Let $s \ge 2$ be an even integer, and suppose $f: \mathbb{R}^N \times W \to \mathbb{R}$ is $L^s(q)$ -valued real analytic. Then

$$\mathbf{E}[\sup_{w \in W} [|\psi_n(w)|^s] < \infty$$

- Recall Markov's inequality: $P(Y \ge M) \le M^{-1}E[Y]$, where $Y \ge 0$.
- Hence $\mathbf{P}(\sup_{w \in W} |\psi_n(w)| \ge M) \le AM^{-s}$ for any $M \ge 0$.
- Hence for any $\epsilon > 0$ there exists M > 0 such that

$$\mathbf{P}(\sup_{w \in W} |\psi_n(w)| < M) \ge 1 - \epsilon$$

Lemma for equicontinuity

Lemma: Suppose W is compact. Let $s \ge 2$ be an even integer, and suppose $f: \mathbb{R}^N \times W \to \mathbb{R}$ is $L^s(q)$ -valued real analytic. Then there exists $\delta_{\max} > 0$ and B > 0 such that for any $\delta \in (0, \delta_{\max})$

$$\mathbf{E} \left| \sup_{\|w-w'\| \le \delta} |\psi_n(w) - \psi_n(w')|^s \right| \le B\delta^s$$

Lemma: Suppose $f: \mathbb{R}^N \times W \to \mathbb{R}$ is $L^s(q)$ -valued real analytic. Then the partial derivative $\partial_{w_i} f(w, x)$ is $L^s(q)$ -valued real analytic.

Lemma for equicontinuity

Lemma: Suppose W is compact. Let $s \ge 2$ be an even integer, and suppose $f: \mathbb{R}^N \times W \to \mathbb{R}$ is $L^s(q)$ -valued real analytic. Then there exists $\delta_{\max} > 0$ and B > 0 such that for any $\delta \in (0, \delta_{\max})$

$$\mathbf{E} \left[\sup_{\|w-w'\| \le \delta} |\psi_n(w) - \psi_n(w')|^s \right] \le B\delta^s$$

• Via Markov's inequality as before, this implies for any $\epsilon > 0$ and $\eta > 0$ that there exists $\delta > 0$ such that

$$\mathbf{P}(\sup_{\|w-w'\|\leq\delta}|\psi_n(w)-\psi_n(w')|<\eta)<1-\epsilon$$

- Tightness can now be proved via a standard argument.
- Let $\epsilon > 0$ be given.
- Let M be such that, for $F' = \{ f \in C \mid \sup_{w \in W} |f(w)| < M \}$, we have $\mathbf{P}(\psi_n \in F') \ge 1 \epsilon/2$
- For k = 1, 2, ... let $\delta_k > 0$ be such that, for $F_k = \{ f \in C \mid \sup_{\|w-w'\| \le \delta_k} |f(w) f(w')| < 1/k \}$, we have $\mathbf{P}(\psi_n \in F_k) \ge 1 2^{-k} \epsilon/2$
- Let $F = F' \cap \bigcap_k F_k$ and $K = \overline{F}$.
- *K* is compact by Arzelà-Ascoli and $\mathbf{P}(\psi_n \in K) \ge 1 \epsilon$.
- Therefore ψ_n is tight.

Theorem (Grey Book Theorem 5.9): Suppose W is compact. Let $s \ge 2$ be an even integer, and suppose $f: \mathbb{R}^N \times W \to \mathbb{R}$ is $L^s(q)$ -valued real analytic. Then:

- 1. ψ_n is tight.
- 2. For any finite subset $\{w_1, ..., w_k\} \subseteq W$ the vector $(\psi_n(w_1), ..., \psi_n(w_k))$ converges as $n \to \infty$ to a normal distribution with mean zero and covariance $\Sigma_{ij} = \text{cov}(f(X, w_i), f(X, w_j))$. This is the usual central limit theorem.
- 3. $\psi_n \to \psi$ in distribution, where ψ is continuous and every $(\psi(w_1), ..., \psi(w_k))$ has the above normal distribution. By Prohorov's Theorem.

Comparison to the Grey Book

- The Grey Book establishes uniform boundedness in Theorem 5.8.
- The proof of tightness (Example 5.3) does not discuss Arzelà-Ascoli or establish equicontinuity.
- The proof of convergence (Theorem 5.9) discusses the cylindrical σ -algebra on \mathbb{R}^W , which doesn't seem relevant.
- Because equicontinuity is not discussed, the fact that the w-derivatives of f inherit the property of being $L^s(q)$ -valued real analytic isn't mentioned.

Bibliography

- (Grey Book) S. Watanabe (2009) Algebraic Geometry and Statistical Learning Theory.
- P. Billingsley (1999) Convergence of Probability Measures.