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1 The Perturbation Lemma

The Perturbation Lemma is a powerful result with broad applications, which are summar-
ised in [Cra04]. Roughly speaking, it is a tool which allows us to modify the differentials
of homotopy equivalent complexes or linear factorisations without disturbing the equival-
ence, subject to certain conditions on the nature of the homotopy equivalence. The result
is usually stated for chain complexes in an abelian category (see [BL91; Cra04]) however
it is readily adapted to the setting of linear factorisations. The definitions and results
relating to linear factorisations in this section are all analogues to similar statements for
chain complexes in an abelian category. These analogous statements are summarised in
Appendix A.

Let S be a commutative ring and R a S-algebra.

Definition 1.1. Let (L, dL) and (M,dM) be linear factorisations of f ∈ R. A deformation
retract over S between (L, dL) and (M,dM) consists of S-linear maps

(L, dL) (M,dM), h
i

p

(∗)

where pi = 1, and ip is homotopic to the identity via h (so ip − 1 = hdM + dLh). The
deformation retract is called strong if hi = 0, ph = 0 and h2 = 0.

A (strong) deformation retract is a special type of homotopy equivalence of linear
factorisations. In the setting of the above definition, a perturbation of (∗) is an odd R-
linear map δ : M →M where (dM + δ)2 = g · 1, where possibly f 6= g. The perturbation
δ is called small if (1− δh) is invertible. The following lemma gives a convenient way to
check whether a perturbation is small.

Lemma 1.2. A perturbation δ is small if and only if (δh)n = 0 for sufficiently large n.

Proof. If (δh)n = 0 then the inverse of (1− δh) is
∑n

k=0(δh)k.

In fact a perturbation is small if and only if δh is locally nilpotent, meaning for all
x ∈ M there exists an n such that (δh)n(x) = 0. This is explained in [Cra04, Remark
2.3].

A (strong) deformation retract of complexes of S-modules is defined in the obvious
way (Definition A.3), and as are (small) perturbations thereof. When regarding a complex
as a linear factorisation of zero, a (strong) deformation retract of complexes is exactly the
same as a (strong) deformation retract of linear factorisations.

We now move to the statement of the Perturbation Lemma. Let ϕ : S → R be the
morphism of rings associated to the S-algebra structure on R and note that if b : M → N
is an S-linear map of R-modules and r ∈ ϕ(S) then b(rm) = rb(m) for all m ∈M .
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Theorem 1.3 (Perturbation Lemma for linear factorisations). Suppose we have a strong
deformation retract over S of linear factorisations of f ∈ ϕ(S)

(L, dL) (M,dM), h
i

p

and let δ be a small perturbation such that (dM + δ)2 = g · 1 and g ∈ ϕ(S). Then the
perturbed data

(L, d′L) (M,dM + δ), h′
i′

p′

is a deformation retract over S of linear factorisations of g, where d′L = dL + pai, i′ =
i+ hai, p′ = p+ pah, h′ = h+ hah and a = (1− δh)−1δ.

Proof. The proof of this theorem closely follows the proof in [Cra04, Section 2.4] of the
analogous statement for complexes. We begin by proving the following statements:

(1) δha = ahδ = a− δ,

(2) (1− δh)−1 = 1 + ah and (1− hδ)−1 = 1 + ha,

(3) aipa+ adM + dMa = (g · 1− f · 1)(1 + ah+ ha).

For (1), note by definition of a we have (1− δh)a = δ, proving a− δ = δha. For the other
equality, we can write δhδ = δ − (1− δh)δ and multiply on the left by (1− δh)−1 to get
ahδ = a− δ. Statement (2) is proved by observing

(1 + ah)(1− δh) = 1 + ah− δh− ahδh
= 1 + ah− δh− (a− δ)h
= 1

and similarly that (1 + ha)(1− hδ) = 1, (1− hδ)(1 + ha) = 1 and (1 + ha)(1− hδ) = 1.
For (3) we compute directly. Using (1) and (2) above, and the fact that h2 = 0 we have

adM + dMa+ aipa = adM + dMa+ a(1 + dMh+ hdM)a

= adM(1 + ha) + (1 + ah)dMa+ a2

= adM(1− hδ)−1 + (1− δh)−1dMa+ a2

= (1− δh)−1
[
(1− δh)adM + dMa(1− hδ)

+ (1− δh)a2(1− hδ)
]
(1− hδ)−1

= (1 + ah)
[
(a− δha)dM + dM(a− ahδ)

+ (a− δha)(a− ahδ)
]
(1 + ha)

= (1 + ah)
[
(a− a+ δ)dM + dM(a− a+ δ)

+ (a− a+ δ)(a− a+ δ)
]
(1 + ha)

= (1 + ah)
[
δdM + dMδ + δ2

]
(1 + ha)

= (1 + ah)
[
(dM + δdM)2 − d2M

]
(1 + ha)

= (g · 1− f · 1)(1 + ah)(1 + ha)

= (g · 1− f · 1)(1 + ah+ ha)

(L, d′L) is a linear factorisation of g. We need to show that d′L
2 = g · 1. We have
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d′L
2

= (dL + pai)2

= f · 1 + dLpai+ paidL + paipai

= f · 1 + dLpai+ paidL + p ((g · 1− f · 1)(1 + ah+ ha)− adM − dMa) i

= g · 1 + dLpai+ paidL + p ((g · 1− f · 1)(ah+ ha)− adM − dMa) i

= g · 1 + pa
(
idL + (g · 1− f · 1)hi− dM i

)
+
(
dLp+ (g · 1− f · 1)ph− pdM

)
ai

= g · 1

where we use that pi = 1, pdM = dLp, idL = dM i, hi = 0, ph = 0, h2 = 0, and equation
(3) above.

i′ is a morphism. We need to show that i′d′L = (dM + δ)i′. We have

i′d′L − (dM + δ)i′ = (i+ hai)(dL + pai)− (dM + δ)(i+ hai)

= idL + haidL + ipai+ haipai− dM i− δi− dMhai− δhai
= idL + haidL + ipai+ h

(
(g · 1− f · 1)(1 + ah+ ha)− adM − dMa

)
i

− dM i− δi− dMhai− (a− δ)i
= haidL + ipai− h(adM + dMa)i− dMhai− ai
= ha(idL − dM i) + (ip− hdM − dMh− 1)ai

= 0

where we use (1), (3), idL = dM i, hi = 0, h2 = 0, ip− 1 = hdM + dMh and idL = dM i.

p′ is a morphism. We need to show that d′Lp
′ = p′(dM + δ). We have

d′Lp
′ − p′(dM + δ) = (dL + pai)(p+ pah)− (p+ pah)(dM + δ)

= dLp+ paip+ dLpah+ paipah− pdM − pahdM − pahδ − pδ
= dLp+ paip+ dLpah+ p

(
(g · 1− f · 1)(1 + ah+ ha)− adM − dMa

)
h

− pdM − pahdM − p(a− δ)− pδ
= paip+ dLpah− p(adM + dMa)h− pahdM − pa
= pa(ip− dMh− hdM − 1) + (dLp− pdM)ah

= 0

where we use (1), (3), h2 = 0, ph = 0, dLp = pdM and ip− 1 = dMh+ hdM .

p′i′ = 1. This is straightforward:

p′i′ = (p+ pah)(i+ hai) = 1

since ph = 0, hi = 0 and h2 = 0.

h′ is a homotopy from i′p′ to 1. We need to show i′p′ − 1 = h′(dM + δ) + (dM + δ)h′.
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Writing d′M = dM + δ we have

1 + h′d′M + d′Mh
′ − i′p′ = 1 + (h+ hah)(dM + δ) + (dM + δ)(h+ hah)

− (i+ hai)(p+ pah)

= 1 + hdM + hahdM + hδ + hahδ + dMh+ dMhah+ δh+ δhah

− ip− ipah− haip− haipah
= hahdM + hδ + hahδ + dMhah+ δh+ δhah

− ipah− haip− haipah
= hahdM + hδ + h(a− δ) + dMhah+ δh+ (a− δ)h− ipah

− haip− h
(
(g · 1− f · 1)(1 + ah+ ha)− adM − dMa

)
h

= hahdM + ha+ dMhah+ ah− ipah− haip+ h
(
adM + dMa

)
h

= ha(hdM + 1− ip+ dMh) + (dMh+ 1− ip+ hdM)ah

= 0

where we use (1), (3), ip− 1 = hdM + dMh and h2 = 0.

This has shown that the maps i′, p′, d′L, d′M and h′ form a deformation retract. It is
clearly also a strong deformation retract, and so this proves the claim.

Remark. One can show that we can replace the condition that the initial deformation
retract in Theorem 1.3 be strong with the following conditions on the deformation retract
and small perturbation:

(1) pδ = 0 and ph = 0,

(2) (dM + δ)2 = d2M .
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2 Perturbation in LGk
Lemma 2.1 (Proposition 6.1 [DM13]). Let S be a ring and R an S-algebra. Let (L, dL)
and (M,dM) be linear factorisations of f ∈ ϕ(S) and suppose we have a strong deforma-
tion retract over S

(L, dL) (M,dM), h
σ

π
(∗)

Then for any linear factorisation (Z, dZ) of g ∈ R where f + g ∈ ϕ(S) there exists a
deformation retract over S

(L⊗R Z, dL ⊗ 1 + 1⊗ dZ) (M ⊗R Z, dM ⊗ 1 + 1⊗ dZ), h′

Proof. Tensoring the modules in (∗) by Z we obtain

(L⊗R Z, dL ⊗ 1) (M ⊗R Z, dM ⊗ 1), h⊗ 1
π⊗1

σ⊗1
.

which is also a strong deformation retract. Finally note that 1⊗dZ is a small perturbation
since (1 − h ⊗ dZ)−1 = (1 + h ⊗ dZ) and so by the Perturbation Lemma (Theorem 1.3)
we obtain a strong deformation retract over S:

(L⊗R Z, dL ⊗ 1 + 1⊗ dZ) (M ⊗R Z, dM ⊗ 1 + 1⊗ dZ), h′

Lemma 2.1 provides us with a tool to modify existing strong deformation retracts; the
next result provides us with a source.

Lemma 2.2. Let (P, d) be a bounded-to-the-right chain complex of projective objects in
an abelian category. Suppose that (P, d) is exact except at degree zero and that H0(P ) is
also projective. Then we have a strong deformation retract

(H(P ), 0) (P, d), h

of chain complexes, where (H(P ), 0) is the homology of P with zero differentials.

Proof. Note that H0(P ) = P0

/
im(d1) and Hi(P ) = 0 for i 6= 0. A chain map p : (P, d)→

(H0(P ), 0) is obtained by considering the quotient morphism p0 : P0 → H0(P ). A chain
map i : (H0(P ), 0) → (P, d) is obtained from the lifting property of projective objects.
Since H0(P ) is assumed to be projective and the quotient map p0 is an epimorphism we
obtain a map i0 : H0(P )→ P0 such that

P0 H0(P )

H0(P )

p0

i0

commutes. Hence we have pi = 1. We now construct a homotopy h : 1 ∼= ip.
We construct the maps hn : Pn → Pn+1 by induction on n. For h0, we are in the

following situation

· · · P1 P0 0

· · · P1 P0 0

d1

1 1−i0p0

d1
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Note that p0(1 − i0p0) = 0 and so (1 − i0p0) factors through ker(p0). By definition of p0
we also have that d1 : P1 → ker(p0) is an epimorphism. Then we can apply the lifting
property of projective objects to obtain h0 : P0 → P1 such that

P0

P1 ker(p0) ⊆ P0

1−i0p0
h0

d1

commutes. Now let n ≥ 0 and suppose we have constructed hk for k < n. Then we are
in the situation

· · · Pn+1 Pn Pn−1 Pn−2 · · ·

· · · Pn+1 Pn Pn−1 Pn−2 · · ·

dn+1

1

dn

1
hn−1

dn−1

1
hn−2

dn+1 dn dn−1

where we have 1 = dnhn−1 + hn−2dn−1. Note that if n = 1 then P−1 = 0, h−1 = 0
and d0 = 0. We now aim to construct hn : Pn → Pn+1. Note that dn(1 − hn−1dn) =
dn− (1−hn−2dn−1)dn = 0 so (1−hn−1dn) factors through ker(dn). Since (P, d) is assumed
to be exact in degree n the map dn+1 : Pn+1 → ker(dn) is an epimorphism. Then, using
the lifting property of projective objects we have hn : Pn → Pn+1 such that

Pn

Pn+1 ker(p) ⊆ P0

1−hn−1dn
hn

dn+1

commutes, or in other words 1 = dn+1hn + hn−1dn. The maps i, p and h form the desired
deformation retract, which by Lemma A.4 can be upgraded to a strong deformation
retract.

In defining LGk, we will always apply Lemma 2.2 in the case that (P, d) is the Koszul
complex of some Koszul-regular sequence. The definition of a potential is arranged to
ensure the conditions of Lemma 2.2 are satisfied. For example, consider the following
1-morphisms (X, dX) : (k[x], U) → (k[y], V ) and (Y, dY ) : (k[y], V ) → (k[z],W ) in LGk.
When showing their composition is well defined we will apply Lemma 2.2 when (P, d) is
the Koszul complex of the sequence of partial derivatives ∂y1V, · · · , ∂ynV considered as
elements of k[x, y, z]. By assumption the sequence of partial derivatives is Koszul-regular
and the Jacobi ring k[y]

/
(∂y1V, · · · , ∂ynV ) is free over k. The latter results in the degree

zero homology of the Koszul complex being free over k[x, z], hence projective.

6



A Perturbation of complexes in an abelian category

Let A be an abelian category. In this setting, the Perturbation Lemma applies somewhat
more generally.

Definition A.1. A homotopy equivalence datum of complexes (L, dL) and (M,dM) in A
consists of the following:

(1) A pair of complexes with quasi-isomorphisms i : L�M : p.

(2) A homotopy h : ip ∼= 1.

This data is usually presented like so:

(L, dL) (M,dM), h
i

p

(∗)

Note that a homotopy equivalence datum between complexes is not necessarily a
homotopy equivalence of complexes; it is a weaker concept. It is, however, an isomorphism
of complexes in the derived category of A. Since we have no notion of ‘homology’ for linear
factorisations — and hence no notion of a ‘quasi-isomorphism’ — the notion of a homotopy
equivalence datum does not make sense for linear factorisations.

In the setting of the definition above, a perturbation of the homotopy equivalence
datum (∗) is a map δ : M → M [1] such that (m + δ)2 = 0. The perturbation δ is called
small if (1− δh) is invertible. The Perturbation Lemma concerns a small perturbation of
a homotopy equivalence datum.

Theorem A.2 (Perturbation Lemma). Let

(L, dL) (M,dM), h
i

p

be a homotopy equivalence datum in A and δ a small perturbation. Then the perturbed
data

(L, d′L) (M,dM + δ), h′
i′

p′

is also a homotopy equivalence datum, where d′L = dL + pai, i′ = i + hai, p′ = p + pah,
h = h+ hah and a = (1− δh)−1δ.

Proof. See [Cra04] or the proof of Theorem 1.3.

Definition A.3. A deformation retract of complexes in A is a homotopy equivalence
datum

(L, dL) (M,dM), h
i

p

where we also have pi = 1. A DR is called strong if hi = 0, ph = 0 and h2 = 0.

Clearly a deformation retract is also a homotopy equivalence datum. The terminology
“strong deformation retract” comes from [BL91]; in [Cra04] this is called “special deform-
ation retract”. In [Cra04, Remark 2.3.i] it is noted that any deformation retract can be
transformed into a strong deformation retract.

Lemma A.4. If we have a deformation retract, then the morphisms can be modified to
produce a strong deformation retract between the same pair of complexes.

Corollary A.5 (to Perturbation Lemma). Any small perturbation of a strong deformation
retract (in the sense of Theorem A.2) is a strong deformation retract.
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