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1 Definitions

Let S be a commutative ring and f ∈ S. The example to keep in mind is the case when
S is a polynomial ring over a commutative ring k, possibly in more than one variable.

The most concrete way of thinking about matrix factorisations of f is as a pair of
n× n square matrices (P,Q) with entries in S which satisfy

PQ = QP = f · I

where I is the n× n identity matrix. For example if S = k[x, y] and f = x2 − y2 we have
the following matrix factorisation of f :(

x y
y x

)(
x −y
−y x

)
=

(
x −y
−y x

)(
x y
y x

)
=

(
x2 − y2 0

0 x2 − y2
)

By choosing n generators for S⊕n we can associate to P and Q morphisms p, q : S⊕n →
S⊕n respectively. With this view, the data of a matrix factorisation can be expressed like
so:

S⊕n S⊕n S⊕n

0 1 0

p q

This can be viewed as a Z2-graded S-module X = X0 ⊕ X1, where X0 = S⊕n and
X1 = S⊕n, together with an odd endomorphism dX =

(
0 q
p 0

)
such that d2X = f · 1X . This

grading is also indicated on the diagram above. There are some immediate generalisations:

• What if we allow matrix factorisations of ‘infinite rank’? e.g. Xi = S⊕Z.

• More generally, what if the Xi are not required to be free S-modules?

Definition 1. A linear factorisation of f ∈ S is a pair (X, dX) where X is a Z2-graded
S-module and dX : X → X is an odd endomorphism such that d2X = f · 1X . A linear
factorisation (X, dX) is a matrix factorisation if X is a free S-module, and a matrix
factorisation is finite rank if the module is finitely generated.

Recall that a complex of S-modules is a Z-graded S-module C equipped with a degree
±1 endomorphism dC : C → C which squares to zero. A linear factorisation can be viewed
as a Z2-graded cousin of a complex of S-modules, although in many respects one which is
less interesting; there is no notion of (co)homology for linear factorisations. Nevertheless
many concepts from the world of complexes readily extend to linear factorisations.
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Definition 2. A morphism of linear factorisations α : (X, dX)→ (Y, dY ) is a degree zero
S-linear map which commutes with the differential, meaning that both squares in the
diagram

X0 X1 X0

Y0 Y1 Y0

α0 α1 α0

commute.

2 The geometric content of matrix factorisations

As above let S be a commutative ring, f ∈ S, and set R = S
/

(f). In this section we will
explain how to associate a geometric object to a finite rank matrix factorisation (X, d) of
f in the case that f is not a zero divisor. When S = k[x1, · · · , xm] this geometric object
will be a part of the algebraic set associated to the ring R. That is:

V(f) = {a ∈ kn | f(a) = 0}.

Note that in the case of k = C or k = R the condition that f is not a zero divisor just
means f 6= 0. Let (X, d) be a finite rank matrix factorisation of f , where X = X0 ⊕X1

and d =
(

0 d1
d0 0

)
.

Matrix factorisations to R-modules

The first step is to associate to (X, d) a particular type of R-module. Since d1d0 = f · 1X1

and f is not a zero divisor d0 is a monomorphism (the same can also be said of d1). Setting
M = coker(d0) = X1

/
im(d0) we obtain the short exact sequence

0 S⊕n S⊕n M 0
X0 X1

d0 e
(∗)

Note that f acts trivially on M . Indeed, if m = e(s) ∈ M we have fm = e(fs) =
ed0d1(s) = 0 since the sequence (∗) is exact. It follows that M is naturally an R-module.

The R-modules which arise in this way are special. Let K(R) be the subcategory of
R-modules which can be put into a short exact sequence of S-modules of the form1

0 S⊕n S⊕n M 0

When S is a regular local ring K(R) is the category of Cohen-Macaulay modules. This
is not how Cohen-Macaulay modules are usually defined. For more on Cohen-Macaulay
modules see [Yos90], and in particular Chapter 7 for more on the relationship between
Cohen-Macaulay modules and matrix factorisations2.

R-modules to algebraic sets

Recall that the annihilator of an S-module M is the ideal

AnnS(M) = {s ∈ S | sM = 0}
1This is not standard notation.
2This is the context in which matrix factorisations were first introduced in [Eis80].
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of S. For example, the annihilator of the S-module R = S
/

(f) is the ideal (f).
Now let (X, d) be a matrix factorisation of f ∈ S and M the associated Cohen-

Macaulay module. We have shown that M is naturally an R-module, so fM = 0, or in
other words we have the following inclusion of ideals of S:

(f) ⊆ AnnS(M)

We now focus on the case that S = k[x1, · · · , xm] for some commutative ring k. This
allows us to look at the zero sets of each of these ideals. This gives

V(f) ⊇ V(AnnS(M))

and so we have associated to a matrix factorisation (X, d) of f an algebraic subset the
zero set of f . If we assume k is Noetherian (for example if k = C or k = R) all ideals of S
are finitely generated, so say AnnS(M) = (g1, · · · , gr). This gives a concrete description
of V(AnnS(M)). In summary:

(X, d) M V(g1, · · · , gn)

M.F. of f K(R) Algebraic subset of V(f)

coker
V(AnnS(−))

Examples

Let S = R[x, y] and f = x2 − y2. Consider the following matrix factorisations of f :

R[x, y] R[x, y] R[x, y]
x2−y2 1 (1)

R[x, y] R[x, y] R[x, y]1 x2−y2
(2)

R[x, y]2 R[x, y]2 R[x, y]2P Q
(3)

R[x, y] R[x, y] R[x, y]
x+y x−y

(4)

where P = ( x yy x ) and Q =
(
x −y
−y x

)
.

Matrix Factorisation Module Annihilator Algebraic Subset

(1) R[x, y]
/

(x2 − y2) (x2 − y2) V(x2 − y2)

(2) 0 R[x, y] ∅

(3) R[x, y]2
/

((x, y)) + ((y, x))

(4) R[x, y]
/

(x+ y) (x+ y) V(x+ y)

Algebraic sets to back to matrix factorisations?

Given an algebraic set V(I), where I ⊆ S is an ideal, it is tempting to consider the
R-module S

/
I. Unfortunately this module is not always in K(R) and I am currently not

certain how to reliably associate a module in K(R) to V(I).
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Suppose we find such a module M in K(R) such that AnnS(M) = I. From its free
resolution

0 S⊕n S⊕n M 0
p e

we can produce a matrix factorisation as follows. Given s ∈ S⊕n we have that fs ∈
ker(e) = im(p) since f acts trivially on M . Since the sequence is exact there is a unique
t ∈ S⊕n such that fs = p(t). We define q : S⊕n → S⊕n as q(s) = t.

Lemma 3. The following

S⊕n S⊕n S⊕n
p q

is a matrix factorisation of f .

Proof. Clearly pq = f · 1, and using that p is a monomorphism one can see qp = f · 1.
It remains to show that q is S-linear. For s, s′ ∈ S⊕n we have p(q(s+s′)) = fs+fs′ =

p(q(s)+ q(s′)), and since p is a monomorphism this gives q(s+s′) = q(s)+ q(s′). Likewise
q(as) = aq(s) for a ∈ S.

This association sending a matrix factorisation (X, d) to the module coker(d0) is func-
torial and we have shown it is essentially surjective. However, it does not induce an
equivalence of categories. The issue is as follows. Consider a free resolution of a module
M in K(R):

0 S⊕n S⊕n M 0
p e

We can construct more free resolutions of M by adding free summands to the first two
terms like so:

0 S⊕n ⊕ S S⊕n ⊕ S M 0
p⊕1 e⊕0

The matrix factorisations associated to each of these sequences are clearly not isomorphic.
In other words, our functor identifies non-isomorphic matrix factorisations.

We can solve this issue by using a category of matrix factorisations with different
morphisms, which we define in the next section. It turns out that this will be equivalent
not to K(R), but to the quotient category K(R)

/
{R}. The proof uses the same ideas

discussed above and is given, in the case that S is a regular local ring (i.e. K(R) is the
category of Cohen-Macaulay modules, but this makes little difference to the proof), in
[Yos90, Chapter 7].

3 The homotopy category of matrix factorisations

Homotopy equivalent linear factorisations is defined analogously to complexes. We work
with linear factorisations of f ∈ S, for S a commutative ring.

Definition 4. A homotopy of a morphism α : (X, dX) → (Y, dY ) of linear factorisations
is an odd S-linear map h : X → Y such that α = dY h+ hdX . Diagrammatically:

X0 X1 X0

Y0 Y1 Y0

α0
h

α1 α0
h

where the triangles do not commute, but rather sum to αi. We say two morphisms
α, β : (X, dX)→ (Y, dY ) are homotopic if there exists a homotopy of α− β.

4



The homotopy category of linear factorisations is obtained by identifying homotopic
morphisms. If two linear factorisations (X, dX) and (Y, dY ) are equivalent in the homotopy
category then we say they are homotopy equivalent. This is the case if and only if there
exist morphisms α : (X, dX) → (Y, dY ) and β : (Y, dY ) → (X, dX) such that αβ is
homotopic to 1Y and βα is homotopic to 1X .

We denote the homotopy category of matrix factorisations of f ∈ S by HMF(S, f), and
the subcategory of matrix factorisations which are homotopic to a matrix factorisation of
finite rank by hmf(S, f).

Example. Let (X, d) be a linear factorisation. Then the linear factorisation

X0 ⊕ S X1 ⊕ S X0 ⊕ S
d0⊕1 d1⊕f

is always homotopy equivalent to (X, d), but not in general isomorphic to (X, d). Consider
the morphisms

X0 ⊕ S X1 ⊕ S X0 ⊕ S

X0 X1 X0

d0⊕1

π

d1⊕f

π π

d0

ι

d1

ι ι

where ι and π are the inclusion and projection maps. We have πι = 1, so it remains to
show that ιπ is homotopic to 1. A homotopy is

X0 ⊕ S X1 ⊕ S X0 ⊕ S

X0 ⊕ S X1 ⊕ S X0 ⊕ S

d0⊕1

ιπ−1

d1⊕f

ιπ−1
0⊕−1

ιπ−10

d0⊕1 d1⊕f

In the following lemma we identify a finite rank matrix factorisation with a pair of
matrices by choosing generators for the S⊕n. Call a finite dimensional matrix factorisation
(P,Q) reduced if it is equal to (1, f), or if both P and Q have no unit entries.

Lemma 5. Every finite rank matrix factorisation is homotopy equivalent to a reduced
matrix factorisation.

Proof. See previous example.

Theorem 6 ([Orl09]). Let k be an algebraically closed field and let f ∈ k[|x|]. Then
hmf(k[|x|], f) is the zero category if and only if the ring R = k[|x|]

/
(f) is regular.
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