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Let k be a commutative ring and R a k-algebra (soon we will assume k is a field of
characteristic zero and R is a polynomial ring). Let t = (¢1,--- ,t,) be a sequence of
elements in R

Last talk we constructed a strong deformation retract involving the Koszul complex
of t. This relied on the existence of certain k-linear maps 0y,,...,0;, : R — R, which
together we referred to as a system of t-derivatives. In this talk we will show that such
maps exist under certain assumptions on ¢, and that they can be computed algorithmically.
Recall that a system of t-derivatives is defined as follows. Let k[t] denote the k-algebra
generated by 1,¢1,...,t,.

Definition 1. Given t = (t1,...,t,), system of t-derivatives are k-linear maps 0, : R —
R, 1 =1,...,n which satisfy the following properties:

(1) Every f € R can be written uniquely in the form

where each r, € (), ker(d;,) and finitely many r, # 0.
(2) 0y, (t") = v;t'=< for all v € N™ (where we understand that 0¢; ' = 0).

(3) For f € k[t] and r € [, ker(9;,) we have 0y, (rf) = r0,(f).

Now suppose that R = k[z] = k[z1,...,2,]. When n =m and t = 2 = (21,...,2,)
our construction will recover the usual partial derivative maps 8%1, ceey %. In other
words our goal is the generalise the notion of taking partial derivatives with respect to
the sequence x = (x1, ..., z,) to taking partial derivatives with respect to other sequences
in k[x].

This generalisation is motivated by the observation that taking derivatives of polyno-
mials is related to polynomial division. Consider the one variable case k[z| = k[x;] and
let f € k[z]. For another formal variable y one can show that in the polynomial ring

k[x,y] we have

fla)y=>Y"

p=1

V) =y

analogously to the analytic Taylor’s Theorem, where f® = Z(f) is the p™ partial

derivative of f. Notice that the right-hand-side is a polynomial since eventually f(™ = 0.
Rearranging this we have

f@) = Fo) = P —y) + (@ -9 ﬁf@ () -y

or in other words, f’(y) is the remainder of f(x) — f(y) divided by (z — y)%. A similar
result can be shown in the multivariate case.



1 Iterated Euclidean division

Our first task is to prove a corollary of the division algorithm in k[z]. Let k be a field.
We begin by recalling some concepts related to polynomial division in the multivariate
polynomial ring k[x] following the conventions of [CLO15, Chapter 2]. A monomial in
k[x] is any polynomial in the set {z*},enn. A monomial ordering on k[z] is a well-founded,
total order relation < on N™ with the property that u < v — u+w < v+w. A typical
example of a monomial ordering is the lexicographic ordering on N, and others are given
in [CLO15, Section 2.2].

Let f = > can Cu" € k[z] where ¢, € k and finitely many ¢, # 0. Any c,2" for
which ¢, # 0 is called a term of f. Given a monomial ordering on k[z], if f # 0 we define
the multi-degree of f as

multideg(f) = max{u € N" | ¢, # 0}

where the maximum is taken with respect to the monomial ordering. Setting u* =
multideg(f) we define the leading term of f with respect to the given monomial ordering
to be LT(f) = c,~xz* . The coefficient c,« is called the leading coefficient and is denoted
LC(f). Consider the division algorithm on k[z] given in [CLO15, Theorem 2.3.3]. We
recall its properties:

Theorem 2 (Division Algorithm). Let f, ¢1, ..., gm € k[z] and suppose we have a monomial
ordering on kx| for which LC(g1), ..., LC(gm) are invertible in k. Given such a monomial
ordering the division algorithm produces r,qy, ..., qm € k[z] which satisfy

(1 )
f=r+ Z 49
i=1

(2) None of the terms of r are divisible by any of the LT(g;), i =1,...,m.
(8) For alli=1,...,m with ¢; # 0 we have multideg(f) > multideg(q;g;).

In [CLO15] the division algorithm theorem is stated under the assumption that & is
a field, but by inspecting the algorithm and proof given in [CLO15] one can observe that
this hypothesis is only needed so the LC(g;) can be inverted.

We show that the division algorithm can be iterated to “completely divide” the coef-
ficients of the divisors ¢y, ..., g, of Theorem 2. The properties of this iterated division
algorithm are stated and proved in Theorem 3 and the algorithm itself is given in Al-
gorithm 1.0.4.

Theorem 3. Let f € k[z] be a polynomial and gy, ..., gm € klz] be non-constant poly-
nomials. Suppose we have a monomial ordering on klz| such that LC(g1),...,LC(gm)
are invertible in k. Given this monomial ordering, ITERATEDDIVISION(f, g1,..., gm) in
Algorithm 1.0.4 computes an expression of the form

[ = Z rug”
u€N"?

where g* = gi* - - - gim, all but finitely many of the r, = 0 and for each r, # 0, all terms
of ry are not divisible by any of the LT(g;), i =1,...,m.



Proof. Let Ry and @y be the values of R and @) respectively in Algorithm 1.0.4 at the
end of the N*® repetition of the loop on line 4, where we start counting from N = 0. Let
i(Qn) and i(Ry) be the indices arising in @y and Ry respectively, so u € i(Qy) if and
only if (u,q) € Qn for some ¢ € k[x] and likewise for i(Ry).

We begin by showing that if the algorithm terminates then we obtain an expression
of the stated form. First note that every index u € N appears in (Qy and Ry at most

once. That is, |i(Qn)| = |@n| and |i(Ry)| = |Ry|. Hence we can define

- {o u g i(Ry) - quN:{O u ¢ i(Qx)

r where (u,r) € Ry q where (u,q) € Qn

We aim to show that for all N we have

F= rung"+ Y qung"

ueN™ ueN™

where g* = g7 - - - gi»». We proceed by induction on N. The base case is clear if we define
R_1 and )4 to be the initial values of R and () defined prior to line 4. Now consider the
inductive case. For u € N™ let |u| = >, u;. Note that if r, y_1 # 0 then |u] < N —1
and if ¢, y—1 # 0 then |u| > N. We also have that if r, y_; # 0 then r, y = r, y_1 since
we do not remove elements from R. Then we have

f= Z ruN-19" + Z qu,N-19"

w:|u|<N ui|u|>N

= Z rung’ + Z (Tu,N+ZPu,igi> 9"
u|u|<N w:|u|>N i=1

n

- Z Tu,Ngu + Z Zpu,igu—‘rei

u u  i=1

= rung"+ > Gung"

where py, 1, ..., pum are obtained by applying the division algorithm to ¢, y—1 as on line 7.
Since the algorithm terminates when Q = () and all 7, # 0 satisfy the required property
this proves we have an expression of the desired form on termination.

It remains to prove that the algorithm terminates. We abuse notation and write
q € Qn to mean (u,q) € Qy for some u € N™. Now define

by = max{multideg(q) | ¢ € Qn}

where the maximum is taken with respect to the chosen monomial ordering. Consider
q € Qn_1 and let pq,...,p, be the polynomials computed from g on line 7. By Theorem 2
we have that multideg(q) > multideg(p;g;). By hypothesis g; is not a constant polynomial
so this implies multideg(q) > multideg(p;) and in particular by_; > multideg(p;). Now,
the elements of () consist of sums of the various py, ..., p, generated on line 7. Since for
any s+t # 0 we have multideg(s + t) < max{multideg(s), multideg(¢)} [CLO15, Lemma
2.2.8] it follows that for any ¢’ € @y that multideg(q’) < by_;. Therefore by < by_; and
since monomial orderings are well-founded the algorithm terminates. O



Algorithm 1.0.4 Iterated Division Algorithm

Require: A polynomial f € k[z], non-constant polynomials ¢gi,...,g, € k[z], and a
monomial ordering on k[z]| such that LC(g1),...,LC(gn) are invertible in k.
1: procedure ITERATEDDIVISION(f, g1, ..., gm)
2 Q « {(0, )} >0=(0,...,0) € N™
33 R+ 0
4: while Q # () do
5: Qnew < 0
6 for all (u,q) € Q do
7 Apply the division algorithm to obtain 7, py, ..., p, € k[z] satisfying

q=r+ Zpigi
i=1

along with the other conditions in Theorem 2.

8: Qnew ¢ Quew U{(u+e,p;) | i=1,...,m where p; # 0}
9: R+ {(u,m)}UR

10: () < COLLECTTERMS(Qyew)

11: return R

12: function COLLECTTERMS(Q)

13: Qcollected —0

14: for all u where (u,p) € @ for some p do

15: Let py, ..., ps be all the polynomials such that (u,p;) € @
16: if >°°  p; # 0 then

17: Qcollected < {(u7 Zle pl)} U Qcollected

18:  return Qcollected




2 Differentiating with respect to a sequence of poly-
nomials

Fix a monomial ordering >, on k[z]. We extend this to a monomial ordering on k[z,y] =
Elxi, ..., Tm, Y1, -, Ym) as follows. Let (a,b), (a’,b") € N™ x N™ where a = (a1, ...,a,) €
N and likewise for b, ' and b'. We define

(a,b) >4, (b)) =a>,d or (a=da"and b >, V)

That is >, is the lexicographic ordering on N™ x N™ given by considering >, on each
factor. This is clearly a monomial ordering on k[z,y] which agrees with the monomial
order on k[x| when restricted to monomials involving only x-variables, and for which
xz; > y; for all 4,j = 1,...,m. In particular LT,(f(x)) = LT,,(f(z) + f(y)) for all
f € klz]. From now on we dispense with distinguishing between >, and >, , and simply
use > and LT to refer to both monomial orderings.

Consider a sequence t = (ti,...,t,) in k[z] and suppose it is both quasi-regular and a
Grobner basis for its ideal (see Section 3). We define T; = ¢;(x) — ¢;(y) and consider the
sequence T = (Ty,...,T,) in k[z,y]. One can show that T is quasi-regular, and assume
that T is also a Grébner basis for its ideal (is this also automatic?).

The reason for these assumptions is that the sequences ¢t and T have the following

property.

Lemma 5. Let f € k[z]. Suppose we have an expression for f of the form

where finitely many r, # 0 and for all r,, all terms of r, are not divisible by any of the
LT(t;). Then all the coefficients r,, are uniquely determined by f. Likewise for F' € klx,y],
i any expression for F of the form

where finitely many R, # 0 and no term of R, is divisible by any of the LT(T;) = LT(¢;),
the coefficients R, are uniquely determined by F'.

Proof. See Section 3. O

Note that the expressions in the above lemma are exactly the expressions computed
by the iterated division algorithm.
Given f € k[x] write

fl) = fly) =D 1T

ueNn

where the 7, € k[z,y] are the unique polynomials satisfying the conditions in Lemma 5.
For each u € N™ define a map p,, : k[z] — k[x,y] by setting p,(f) = r,. We now prove
some facts about these maps. For u,v € N™ define u! = uq!us! - - - u,! and

vy J0 if any v; —u; <0
v Wlu), otherwise

Lemma 6. p, is k-linear.



Proof. Let f,g € k[z]. Then we can write

(f+9)@) = (fF+9)@) =D (pulf) + pulg)T"

uEN?

Now, if p.(f) 4+ pu(g) # 0 then no term of p,(f) + pu.(g) is divisible by any of the LT(T;).
Hence the right-hand-side satisfies the conditions in Lemma 5 and so by uniqueness p,(f +

9) = pu(f) + pulg). Likewise p,(cf) = cpy(f) for ¢ € k. u
Lemma 7. p,(t) = (3)t*"(y) for allv € N* and u # 0.

Proof. Tt suffices to prove that

v =3 (1) 2.)

Indeed, having shown (2.1) holds we have
v
tU _ t’l} — t’U*'lL T’LL
-t =3 (0)e)

where we note that no term of t*~*(y) is divisible by any of the LT(7;) = LT (¢;(x)).

We proceed by induction on |v| = Y. v;. If v = 0 then both sides of (2.1) are equal
to 1. Now suppose that |v| > 1. Let ¢ be such that v; > 0. Then, using the induction
hypothesis, we have

t°(z) = t;(x)t"" % (z)

@Y ( - ) pmeis(y) T

u

— i+ (" e

u

— Z (” . €Z>t”‘“(y)T“ - ; (Z } Z)t”‘”(y)T“

— (y) + ;0 ((v ; ei) N <Z - Z)) [ ()T

which proves the claim. O

Lemma 8. Let f € k[t] and r € k[z] be such that no term of r is divisible by any of the
LT(t;). Then for u # 0 we have p,(rf) = r(z)p.(f).



Proof. 1t suffices to prove this for f =¥ for v € N”. Using Lemma 7 we have

r(@)t(x) = r(y)t*(y) = r(@)t" (@) —r@@)t(y) + (@)t (y) —r@)t*y)
(@)(t"(x) = t°(y)) + (r(z) — ()" (y)

=@ 3 (0) e + ) = ) )

303

= ) =) + 3 (1)

u#0

Notice that LT(t;) = LT(T}) does not divide any term of (r(z)—r(y))t"(y) or (*)r(z)t*"*(y)
forall j =1,...,n and u € N*. Hence by Lemma 5 this proves the claim. O]

Now let e; € N™ have a 1 in the i*! coordinate and 0 elsewhere and let ¢ : k[z,y] — k[z]
be the k-algebra morphism identifying x and y. For each t; we define a map 0, : k[x] —

k[z] by setting Oy, (f) = wpe,(f)-

Proposition 9. The maps 0y,,...,0, : k[z] — k[x] form a system of t-derivatives as
defined in Definition 1.

Proof. We need to show that 0;,,...,0;, are k-linear and satisfy

(1) Every f € k[x] can be written uniquely in the form

where 7, € (), ker(dy,).
(2) O, (t) = v;t"~ for all v € N* (where we understand that Otj_1 =0).
(3) For f € k[t] and r € ), ker(0;,) we have 0, (rf) = r0,(f).

That 0, ...,0,, are k-linear, and properties (2) and (3) follow directly from Lemma 6,
Lemma 7 and Lemma 8 respectively. For (1) note that we can write any f € k[z] in the

form
fla) = ru(x)t(z)

u

where if 7, # 0 then no term of r, is divisible by any of the LT(¢;). This expression exists
by Theorem 3 and is unique by the assumption on ¢, and note that p,,(r,) = 0 for all u
by Lemma 5. O

Proposition 9 is the main result of this section, but before continuing we note some
other properties of the maps 0y, ..., 0;, defined in Proposition 9. As noted previously,
since Oy, ..., 0y, is a system of t-derivatives we have 0;,0;, = 0,0y, for all i, j. Hence for
a € N” we define 07 = 0" - -- 9/". The next result is analogous to Taylor’s Theorem.

Proposition 10. 97 = alyp, for all a # 0.

Proof. Let f € k[z] and write

fla) =) ru(a)t(z)



where finitely many r, # 0 and if r, # 0 then no term of r, is divisible by any of the
LT(#;). By Lemma 7 we have p,(t*) = (¥)t“*(y) and so

() =Sl )rare)
= al Zru x)ppa(t*)
= a! Z Opa(rytt)

= alppa(f)
where we have that r,(z)p.(t") = pa(r,t*) by Lemma 8. O

Let f € k[z]. Clearly one way to compute 0, (f) is to use Algorithm 1.0.4 to compute
an expression for f of the form
= ru(o)t"(z)

where finitely many r, # 0 and if r, # 0 then no term of r, is divisible by any of the
LT(t;). We then have

0(f) = 3 rula)ust™ (@)
This approach needs many calls to the division algorithm as the whole expansion of
f(z) in terms of ti(x),...,t,(xz) must be computed. A more efficient approach which
only calls the division algorithm twice is given in Algorithm 2.0.11, in which J;,(f) =
DIFFERENTIATE(f, j, t1,...,t,).

Algorithm 2.0.11 Computing 0,

1: procedure DIFFERENTIATE(f, j, t1,...,t,)
2: Use the division algorithm in k[z,y| to obtain r(z,y), ¢1(z,y), . .., g.(z,y) satisfy-
ing

f@) = fy) =r(e,y) + Y aiz,y)(ti(x) — tiy))

i=1
along with the other conditions in Theorem 2.
3: Use the division algorithm in k[z,y| to obtain v'(z,y), p1(z,y),. .., pa(x,y) satis-

fying

g;(z, "(z,y +szxy — ti(y))

4: return ¢(r'(x,y))

3 Appendix regarding the conditions on ¢

We first recall the concept of a Grobner basis.

Definition 12. Fix a monomial ordering on k[x] and let I = (¢1,...,¢,) be an ideal.
Consider the set of leading terms of elements of I:

LT(I) ={LT(f) | f € 1\ {0}}

8



We say that t,...,t, is a Grébner basis for I if the ideal generated by LT(I) is equal to
(LT(t1),...,LT(t,)). Given a sequence t = (t,...,t,) we say that t is a Grébner basis to
mean that t is a Grobner basis for the ideal its elements generate.

Lemma 13 ([CLO15, Corollary 2.6.2]). Let f € k[z]|. Ift is a Grébner basis then when
we apply the division algorithm to divide f by t, the remainder term is zero if and only if
fel.

Note that the property of being a Grobner basis is depends on the monomial ordering
on k[x]. One can show that given a monomial ordering on k[x] and an ideal I there
always exists a Grobner basis for that ideal [CLO15, Corollary 2.5.6], and moreover a
Grobner basis can be computed from a finite generating set for I via an algorithm called
Buchberger’s Algorithm [CLO15, Theorem 2.7.2]. For more on Grébner basis see [CLO15,
Chapter 2].

Next we discuss quasi-regular sequences. Let R be a commutative ring and t =
(t1,...,t,) asequence of elements in R. We denote by I = (¢1,--- ,1,) the ideal generated
by the elements of ¢. Consider the polynomial ring (R/I)[z] = (R/I)[z1,- - ,z,] with
coefficients in R / 1. We define a map

a:(R/Dz] — @1/ (3.1)

m>0

by setting a(z;) = t; + I?, where we denote I° = R by mild abuse of notation. This map
is always surjective. Indeed, consider t* + ™! ¢ ™ / I™*! where u € N" is such that
o u; = m. It is straightforward to show that a(z*) = ¢* + I"™*!. Noting that any
element of [™ / I™*! can be written as a sum of elements of the form at* + I™*! where
a € R is not divisible by any of the t; and applying linearity proves that « is surjective.

The definition of quasi-regular should be seen in the context of the other regularity
conditions on sequences. Recall that part of the definition of a potential was that its
sequence of partial derivatives is Koszul-regular.

Definition 14. We say the sequence t is:

(1) regular if each t; is not a zero-divisor on R/(t1,...,t;—1), and if the ring R/I is
NON-Zero.

(2) Koszul-regular if the Koszul complex of ¢ is exact except in degree zero.
(3) quasi-regular if the map a at (3.1) is an isomorphism.

The definition of Koszul-regular was first given in [Kab71, Definition 1] and the defin-
ition of quasi-regular was first given in [EGA, Volume IV Chapitre 0 15.1.7]. These
regularity conditions and their relationships are also discussed in [Stacks, Sections 10.68,

10.69, 15.30]. In particular we have the following relationships, which are the main result
of [KabT71].

Lemma 15. For the sequence t we have:
(1) If t is reqular then t is Koszul-regqular.

(2) If t is Koszul-reqular then t is quasi-reqular.



This is proved in [Kab71, Theorem 1.1] and also in [Stacks, Section 15.30]. Although it
is not relevant for our purposes, it is worth pointing out that if R is a Noetherian local ring
any quasi-regular sequence of non-units is necessarily a regular sequence [Stacks, Lemma
10.69.6] and so by Lemma 15 the regularity conditions of Definition 14 are equivalent for
such sequences in Noetherian local rings. Examples presented in [Kab71] show that the
implications in Lemma 15 cannot be reversed in general, or even under some generous
assumptions on the ring R.

Now let k be a commutative ring and suppose R is a k-algebra. The next two results
prove Lemma 5.

Lemma 16. Suppose t is quasi-reqular and suppose we have a k-linear map o : R/[ — R
such that 7o = 1. Then if we have >, o(ry)t* = 0 for some r, € R/I, with finitely
many o(r,) = 0. Then we necessarily have o(r,) =0 for all u € N™.

Proof. Suppose for a contradiction that not all 7, = 0. Given v € N let |u| = > 7" | u;.
We define
m = min{|u| | r, # 0}

Rearranging ), » 0(7,)t" = 0 we have
Z o(r,)t" = — Z o (ry)t"
|u|=m m<|ul
which implies } 7, _,, o(r,)t" € I™*+1. Hence in I™ /I™" we have
Z o(ry,)t" =0
|u|=m

Since t is quasi-regular we have o(r,) € I: if this were not the case then this would give
us a non-zero element of (R/I)[z] which is sent to zero by the map a of (3.1). Applying
7 gives r, = 0 and hence o(r,) = 0, proving the claim. O

Similar results to the lemma above are also discussed in [Lip87, Chapter 3]. The next
result provides a particularly useful section of the quotient map using a Grobner basis.

Lemma 17. Fiz a monomial ordering on k[x] and suppose t is a Grébner basis with
respect to this monomual order. Let

V ={r € klz] | no term of r is divisible by any of the LT(¢;)}

Then the quotient map  : klz] — klxz] /I restricts to an isomorphism V — k[z] /1.

Proof. For injectivity suppose r € V is such that 7(r) = 0. Applying the division al-
gorithm to divide r by t yields the remainder term r, since none of the terms in r are
divisible by any of the LT(¢;). Since r € I, by Lemma 13 we have r = 0.

For surjectivity, consider f € k[x]. Via the division algorithm we obtain an expression

for f of the form
f=r+ ati
i=1

where r € V. Then we have 7(f) = m(r), and noting that 7 : k[z] — k[z]/I proves the
claim. =

10
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