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Let k be a commutative ring and R a k-algebra (soon we will assume k is a field of
characteristic zero and R is a polynomial ring). Let t = (t1, · · · , tn) be a sequence of
elements in R

Last talk we constructed a strong deformation retract involving the Koszul complex
of t. This relied on the existence of certain k-linear maps ∂t1 , . . . , ∂tn : R → R, which
together we referred to as a system of t-derivatives. In this talk we will show that such
maps exist under certain assumptions on t, and that they can be computed algorithmically.
Recall that a system of t-derivatives is defined as follows. Let k[t] denote the k-algebra
generated by 1, t1, . . . , tn.

Definition 1. Given t = (t1, . . . , tn), system of t-derivatives are k-linear maps ∂ti : R→
R, i = 1, . . . , n which satisfy the following properties:

(1) Every f ∈ R can be written uniquely in the form

f =
∑
u∈Nn

rut
u

where each ru ∈
⋂

i ker(∂ti) and finitely many ru 6= 0.

(2) ∂ti(t
v) = vit

v−ei for all v ∈ Nn (where we understand that 0t−1j = 0).

(3) For f ∈ k[t] and r ∈
⋂

i ker(∂ti) we have ∂ti(rf) = r∂ti(f).

Now suppose that R = k[x] = k[x1, . . . , xm]. When n = m and t = x = (x1, . . . , xn)
our construction will recover the usual partial derivative maps ∂

∂x1
, . . . , ∂

∂xn
. In other

words our goal is the generalise the notion of taking partial derivatives with respect to
the sequence x = (x1, . . . , xn) to taking partial derivatives with respect to other sequences
in k[x].

This generalisation is motivated by the observation that taking derivatives of polyno-
mials is related to polynomial division. Consider the one variable case k[x] = k[x1] and
let f ∈ k[x]. For another formal variable y one can show that in the polynomial ring
k[x, y] we have

f(x) =
∞∑
p=1

1

p!
f (p)(y)(x− y)p

analogously to the analytic Taylor’s Theorem, where f (p) = dp

dxp (f) is the pth partial
derivative of f . Notice that the right-hand-side is a polynomial since eventually f (m) = 0.
Rearranging this we have

f(x)− f(y) = f ′(y)(x− y) + (x− y)2
∞∑
p=2

1

p!
f (p)(y)(x− y)p−2

or in other words, f ′(y) is the remainder of f(x) − f(y) divided by (x − y)2. A similar
result can be shown in the multivariate case.
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1 Iterated Euclidean division

Our first task is to prove a corollary of the division algorithm in k[x]. Let k be a field.
We begin by recalling some concepts related to polynomial division in the multivariate
polynomial ring k[x] following the conventions of [CLO15, Chapter 2]. A monomial in
k[x] is any polynomial in the set {xu}u∈Nn . A monomial ordering on k[x] is a well-founded,
total order relation < on Nn with the property that u < v =⇒ u+w < v+w. A typical
example of a monomial ordering is the lexicographic ordering on Nn, and others are given
in [CLO15, Section 2.2].

Let f =
∑

u∈Nn cux
u ∈ k[x] where cu ∈ k and finitely many cu 6= 0. Any cux

u for
which cu 6= 0 is called a term of f . Given a monomial ordering on k[x], if f 6= 0 we define
the multi-degree of f as

multideg(f) = max{u ∈ Nn | cu 6= 0}

where the maximum is taken with respect to the monomial ordering. Setting u∗ =
multideg(f) we define the leading term of f with respect to the given monomial ordering
to be LT(f) = cu∗xu

∗
. The coefficient cu∗ is called the leading coefficient and is denoted

LC(f). Consider the division algorithm on k[x] given in [CLO15, Theorem 2.3.3]. We
recall its properties:

Theorem 2 (Division Algorithm). Let f, g1, . . . , gm ∈ k[x] and suppose we have a monomial
ordering on k[x] for which LC(g1), . . . ,LC(gm) are invertible in k. Given such a monomial
ordering the division algorithm produces r, q1, . . . , qm ∈ k[x] which satisfy

(1)

f = r +
m∑
i=1

qigi

(2) None of the terms of r are divisible by any of the LT(gi), i = 1, . . . ,m.

(3) For all i = 1, . . . ,m with qi 6= 0 we have multideg(f) ≥ multideg(qigi).

In [CLO15] the division algorithm theorem is stated under the assumption that k is
a field, but by inspecting the algorithm and proof given in [CLO15] one can observe that
this hypothesis is only needed so the LC(gi) can be inverted.

We show that the division algorithm can be iterated to “completely divide” the coef-
ficients of the divisors g1, . . . , gm of Theorem 2. The properties of this iterated division
algorithm are stated and proved in Theorem 3 and the algorithm itself is given in Al-
gorithm 1.0.4.

Theorem 3. Let f ∈ k[x] be a polynomial and g1, . . . , gm ∈ k[x] be non-constant poly-
nomials. Suppose we have a monomial ordering on k[x] such that LC(g1), . . . ,LC(gm)
are invertible in k. Given this monomial ordering, iteratedDivision(f, g1, . . . , gm) in
Algorithm 1.0.4 computes an expression of the form

f =
∑
u∈Nn

rug
u

where gu = gu1
1 · · · gum

m , all but finitely many of the ru = 0 and for each ru 6= 0, all terms
of ru are not divisible by any of the LT(gi), i = 1, . . . ,m.
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Proof. Let RN and QN be the values of R and Q respectively in Algorithm 1.0.4 at the
end of the N th repetition of the loop on line 4, where we start counting from N = 0. Let
i(QN) and i(RN) be the indices arising in QN and RN respectively, so u ∈ i(QN) if and
only if (u, q) ∈ QN for some q ∈ k[x] and likewise for i(RN).

We begin by showing that if the algorithm terminates then we obtain an expression
of the stated form. First note that every index u ∈ Nn appears in QN and RN at most
once. That is, |i(QN)| = |QN | and |i(RN)| = |RN |. Hence we can define

ru,N =

{
0 u /∈ i(RN)

r where (u, r) ∈ RN

and qu,N =

{
0 u /∈ i(QN)

q where (u, q) ∈ QN

We aim to show that for all N we have

f =
∑
u∈Nm

ru,Ng
u +

∑
u∈Nm

qu,Ng
u

where gu = gu1
1 · · · gum

m . We proceed by induction on N . The base case is clear if we define
R−1 and Q−1 to be the initial values of R and Q defined prior to line 4. Now consider the
inductive case. For u ∈ Nm let |u| =

∑m
i=1 ui. Note that if ru,N−1 6= 0 then |u| ≤ N − 1

and if qu,N−1 6= 0 then |u| ≥ N . We also have that if ru,N−1 6= 0 then ru,N = ru,N−1 since
we do not remove elements from R. Then we have

f =
∑

u:|u|<N

ru,N−1g
u +

∑
u:|u|≥N

qu,N−1g
u

=
∑

u:|u|<N

ru,Ng
u +

∑
u:|u|≥N

(
ru,N +

m∑
i=1

pu,igi

)
gu

=
∑
u

ru,Ng
u +

∑
u

n∑
i=1

pu,ig
u+ei

=
∑
u

ru,Ng
u +

∑
u

qu,Ng
u

where pu,1, . . . , pu,m are obtained by applying the division algorithm to qu,N−1 as on line 7.
Since the algorithm terminates when Q = ∅ and all ru 6= 0 satisfy the required property
this proves we have an expression of the desired form on termination.

It remains to prove that the algorithm terminates. We abuse notation and write
q ∈ QN to mean (u, q) ∈ QN for some u ∈ Nm. Now define

bN = max{multideg(q) | q ∈ QN}

where the maximum is taken with respect to the chosen monomial ordering. Consider
q ∈ QN−1 and let p1, . . . , pm be the polynomials computed from q on line 7. By Theorem 2
we have that multideg(q) ≥ multideg(pigi). By hypothesis gi is not a constant polynomial
so this implies multideg(q) > multideg(pi) and in particular bN−1 > multideg(pi). Now,
the elements of QN consist of sums of the various p1, . . . , pm generated on line 7. Since for
any s+ t 6= 0 we have multideg(s+ t) ≤ max{multideg(s),multideg(t)} [CLO15, Lemma
2.2.8] it follows that for any q′ ∈ QN that multideg(q′) < bN−1. Therefore bN < bN−1 and
since monomial orderings are well-founded the algorithm terminates.
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Algorithm 1.0.4 Iterated Division Algorithm

Require: A polynomial f ∈ k[x], non-constant polynomials g1, . . . , gm ∈ k[x], and a
monomial ordering on k[x] such that LC(g1), . . . ,LC(gm) are invertible in k.

1: procedure iteratedDivision(f, g1, . . . , gm)
2: Q← {(~0, f)} . ~0 = (0, . . . , 0) ∈ Nm

3: R← ∅
4: while Q 6= ∅ do
5: Qnew ← ∅
6: for all (u, q) ∈ Q do
7: Apply the division algorithm to obtain r, p1, . . . , pm ∈ k[x] satisfying

q = r +
m∑
i=1

pigi

along with the other conditions in Theorem 2.
8: Qnew ← Qnew ∪ {(u+ ei, pi) | i = 1, . . . ,m where pi 6= 0}
9: R← {(u, r)} ∪R

10: Q← collectTerms(Qnew)

11: return R
12: function collectTerms(Q)
13: Qcollected ← ∅
14: for all u where (u, p) ∈ Q for some p do
15: Let p1, . . . , ps be all the polynomials such that (u, pi) ∈ Q
16: if

∑s
i=1 pi 6= 0 then

17: Qcollected ← {(u,
∑s

i=1 pi)} ∪Qcollected

18: return Qcollected
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2 Differentiating with respect to a sequence of poly-

nomials

Fix a monomial ordering >x on k[x]. We extend this to a monomial ordering on k[x, y] =
k[x1, . . . , xm, y1, . . . , ym] as follows. Let (a, b), (a′, b′) ∈ Nm×Nm where a = (a1, . . . , am) ∈
Nm and likewise for b, a′ and b′. We define

(a, b) >x,y (a′, b′) ≡ a >x a
′ or (a = a′ and b >x b

′)

That is >x,y is the lexicographic ordering on Nm × Nm given by considering >x on each
factor. This is clearly a monomial ordering on k[x, y] which agrees with the monomial
order on k[x] when restricted to monomials involving only x-variables, and for which
xi > yj for all i, j = 1, . . . ,m. In particular LTx(f(x)) = LTx,y(f(x) + f(y)) for all
f ∈ k[x]. From now on we dispense with distinguishing between >x and >x,y and simply
use > and LT to refer to both monomial orderings.

Consider a sequence t = (t1, . . . , tn) in k[x] and suppose it is both quasi-regular and a
Gröbner basis for its ideal (see Section 3). We define Ti = ti(x)− ti(y) and consider the
sequence T = (T1, . . . , Tn) in k[x, y]. One can show that T is quasi-regular, and assume
that T is also a Gróbner basis for its ideal (is this also automatic?).

The reason for these assumptions is that the sequences t and T have the following
property.

Lemma 5. Let f ∈ k[x]. Suppose we have an expression for f of the form

f =
∑
u∈Nn

rut
u

where finitely many ru 6= 0 and for all ru, all terms of ru are not divisible by any of the
LT(ti). Then all the coefficients ru are uniquely determined by f . Likewise for F ∈ k[x, y],
in any expression for F of the form

F =
∑
u∈Nn

RuT
u

where finitely many Ru 6= 0 and no term of Ru is divisible by any of the LT(Ti) = LT(ti),
the coefficients Ru are uniquely determined by F .

Proof. See Section 3.

Note that the expressions in the above lemma are exactly the expressions computed
by the iterated division algorithm.

Given f ∈ k[x] write

f(x)− f(y) =
∑
u∈Nn

ruT
u

where the ru ∈ k[x, y] are the unique polynomials satisfying the conditions in Lemma 5.
For each u ∈ Nn define a map ρu : k[x] → k[x, y] by setting ρu(f) = ru. We now prove
some facts about these maps. For u, v ∈ Nn define u! = u1!u2! · · ·un! and(

v

u

)
=

{
0 if any vi − ui < 0

v!
u!(v−u)! otherwise

Lemma 6. ρu is k-linear.
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Proof. Let f, g ∈ k[x]. Then we can write

(f + g)(x)− (f + g)(y) =
∑
u∈Nn

(ρu(f) + ρu(g))T u

Now, if ρu(f) + ρu(g) 6= 0 then no term of ρu(f) + ρu(g) is divisible by any of the LT(Ti).
Hence the right-hand-side satisfies the conditions in Lemma 5 and so by uniqueness ρu(f+
g) = ρu(f) + ρu(g). Likewise ρu(cf) = cρu(f) for c ∈ k.

Lemma 7. ρu(tv) =
(
v
u

)
tv−u(y) for all v ∈ Nn and u 6= 0.

Proof. It suffices to prove that

tv(x) =
∑
u

(
v

u

)
tv−u(y)T u (2.1)

Indeed, having shown (2.1) holds we have

tv(x)− tv(y) =
∑
u6=0

(
v

u

)
tv−u(y)T u

where we note that no term of tv−u(y) is divisible by any of the LT(Ti) = LT(ti(x)).
We proceed by induction on |v| =

∑
i vi. If v = 0 then both sides of (2.1) are equal

to 1. Now suppose that |v| ≥ 1. Let i be such that vi > 0. Then, using the induction
hypothesis, we have

tv(x) = ti(x)tv−ei(x)

= ti(x)
∑
u

(
v − ei
u

)
tv−ei−u(y)T u

= (ti(y) + Ti)
∑
u

(
v − ei
u

)
tv−ei−u(y)T u

=
∑
u

(
v − ei
u

)
tv−u(y)T u +

∑
u

(
v − ei
u

)
tv−ei−u(y)T u+ei

=
∑
u

(
v − ei
u

)
tv−u(y)T u +

∑
u6=0

(
v − ei
u− ei

)
tv−u(y)T u

= tv(y) +
∑
u6=0

((
v − ei
u

)
+

(
v − ei
u− ei

))
tv−u(y)T u

= tv(y) +
∑
u6=0

(
v

u

)
tv−u(y)T u

=
∑
u

(
v

u

)
tv−u(y)T u

which proves the claim.

Lemma 8. Let f ∈ k[t] and r ∈ k[x] be such that no term of r is divisible by any of the
LT(ti). Then for u 6= 0 we have ρu(rf) = r(x)ρu(f).
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Proof. It suffices to prove this for f = tv for v ∈ Nn. Using Lemma 7 we have

r(x)tv(x)− r(y)tv(y) = r(x)tv(x)− r(x)tv(y) + r(x)tv(y)− r(y)tv(y)

= r(x)(tv(x)− tv(y)) + (r(x)− r(y))tv(y)

= r(x)
∑
u6=0

(
v

u

)
tv−u(y)T u + (r(x)− r(y))tv(y)

= (r(x)− r(y))tv(y) +
∑
u6=0

(
v

u

)
r(x)tv−u(y)T u

Notice that LT(tj) = LT(Tj) does not divide any term of (r(x)−r(y))tv(y) or
(
v
u

)
r(x)tv−u(y)

for all j = 1, . . . , n and u ∈ Nn. Hence by Lemma 5 this proves the claim.

Now let ei ∈ Nn have a 1 in the ith coordinate and 0 elsewhere and let ϕ : k[x, y]→ k[x]
be the k-algebra morphism identifying x and y. For each ti we define a map ∂ti : k[x]→
k[x] by setting ∂ti(f) = ϕρei(f).

Proposition 9. The maps ∂ti , . . . , ∂ti : k[x] → k[x] form a system of t-derivatives as
defined in Definition 1.

Proof. We need to show that ∂t1 , . . . , ∂tn are k-linear and satisfy

(1) Every f ∈ k[x] can be written uniquely in the form

f =
∑
u∈Nn

rut
u

where ru ∈
⋂

i ker(∂ti).

(2) ∂ti(t
v) = vit

v−ei for all v ∈ Nn (where we understand that 0t−1j = 0).

(3) For f ∈ k[t] and r ∈
⋂

i ker(∂ti) we have ∂ti(rf) = r∂ti(f).

That ∂t1 , . . . , ∂tn are k-linear, and properties (2) and (3) follow directly from Lemma 6,
Lemma 7 and Lemma 8 respectively. For (1) note that we can write any f ∈ k[x] in the
form

f(x) =
∑
u

ru(x)tu(x)

where if ru 6= 0 then no term of ru is divisible by any of the LT(ti). This expression exists
by Theorem 3 and is unique by the assumption on t, and note that ρei(ru) = 0 for all u
by Lemma 5.

Proposition 9 is the main result of this section, but before continuing we note some
other properties of the maps ∂t1 , . . . , ∂tn defined in Proposition 9. As noted previously,
since ∂t1 , . . . , ∂tn is a system of t-derivatives we have ∂ti∂tj = ∂tj∂ti for all i, j. Hence for
a ∈ Nn we define ∂at = ∂a1t1 · · · ∂

an
tn . The next result is analogous to Taylor’s Theorem.

Proposition 10. ∂at = a!ϕρa for all a 6= 0.

Proof. Let f ∈ k[x] and write

f(x) =
∑
u

ru(x)tu(x)
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where finitely many ru 6= 0 and if ru 6= 0 then no term of ru is divisible by any of the
LT(ti). By Lemma 7 we have ρa(t

u) =
(
u
a

)
tu−a(y) and so

∂at (f) =
∑
u

a!

(
u

a

)
ru(x)tu−a(x)

= a!
∑
u

ru(x)ϕρa(t
u)

= a!
∑
u

ϕρa(rut
u)

= a!ϕρa(f)

where we have that ru(x)ρa(t
u) = ρa(rut

u) by Lemma 8.

Let f ∈ k[x]. Clearly one way to compute ∂ti(f) is to use Algorithm 1.0.4 to compute
an expression for f of the form

f(x) =
∑
u

ru(x)tu(x)

where finitely many ru 6= 0 and if ru 6= 0 then no term of ru is divisible by any of the
LT(ti). We then have

∂ti(f) =
∑
u

ru(x)uit
u−ei(x)

This approach needs many calls to the division algorithm as the whole expansion of
f(x) in terms of t1(x), . . . , tn(x) must be computed. A more efficient approach which
only calls the division algorithm twice is given in Algorithm 2.0.11, in which ∂tj(f) =
differentiate(f, j, t1, . . . , tn).

Algorithm 2.0.11 Computing ∂tj

1: procedure differentiate(f, j, t1, . . . , tn)
2: Use the division algorithm in k[x, y] to obtain r(x, y), q1(x, y), . . . , qn(x, y) satisfy-

ing

f(x)− f(y) = r(x, y) +
n∑

i=1

qi(x, y)(ti(x)− ti(y))

along with the other conditions in Theorem 2.
3: Use the division algorithm in k[x, y] to obtain r′(x, y), p1(x, y), . . . , pn(x, y) satis-

fying

qj(x, y) = r′(x, y) +
n∑

i=1

pi(x, y)(ti(x)− ti(y))

4: return ϕ(r′(x, y))

3 Appendix regarding the conditions on t

We first recall the concept of a Gröbner basis.

Definition 12. Fix a monomial ordering on k[x] and let I = (g1, . . . , gn) be an ideal.
Consider the set of leading terms of elements of I:

LT(I) = {LT(f) | f ∈ I \ {0}}
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We say that t1, . . . , tn is a Gröbner basis for I if the ideal generated by LT(I) is equal to
(LT(t1), . . . ,LT(tn)). Given a sequence t = (t1, . . . , tn) we say that t is a Gröbner basis to
mean that t is a Gröbner basis for the ideal its elements generate.

Lemma 13 ([CLO15, Corollary 2.6.2]). Let f ∈ k[x]. If t is a Gröbner basis then when
we apply the division algorithm to divide f by t, the remainder term is zero if and only if
f ∈ I.

Note that the property of being a Gröbner basis is depends on the monomial ordering
on k[x]. One can show that given a monomial ordering on k[x] and an ideal I there
always exists a Gröbner basis for that ideal [CLO15, Corollary 2.5.6], and moreover a
Gröbner basis can be computed from a finite generating set for I via an algorithm called
Buchberger’s Algorithm [CLO15, Theorem 2.7.2]. For more on Gröbner basis see [CLO15,
Chapter 2].

Next we discuss quasi-regular sequences. Let R be a commutative ring and t =
(t1, . . . , tn) a sequence of elements in R. We denote by I = (t1, · · · , tn) the ideal generated
by the elements of t. Consider the polynomial ring (R

/
I)[x] = (R

/
I)[x1, · · · , xn] with

coefficients in R
/
I. We define a map

α : (R
/
I)[x] −→

⊕
m≥0

Im
/
Im+1 (3.1)

by setting α(xi) = ti + I2, where we denote I0 = R by mild abuse of notation. This map
is always surjective. Indeed, consider tu + Im+1 ∈ Im

/
Im+1 where u ∈ Nn is such that∑n

i=1 ui = m. It is straightforward to show that α(xu) = tu + Im+1. Noting that any
element of Im

/
Im+1 can be written as a sum of elements of the form atu + Im+1 where

a ∈ R is not divisible by any of the ti and applying linearity proves that α is surjective.
The definition of quasi-regular should be seen in the context of the other regularity

conditions on sequences. Recall that part of the definition of a potential was that its
sequence of partial derivatives is Koszul-regular.

Definition 14. We say the sequence t is:

(1) regular if each ti is not a zero-divisor on R
/

(t1, . . . , ti−1), and if the ring R
/
I is

non-zero.

(2) Koszul-regular if the Koszul complex of t is exact except in degree zero.

(3) quasi-regular if the map α at (3.1) is an isomorphism.

The definition of Koszul-regular was first given in [Kab71, Definition 1] and the defin-
ition of quasi-regular was first given in [EGA, Volume IV Chapitre 0 15.1.7]. These
regularity conditions and their relationships are also discussed in [Stacks, Sections 10.68,
10.69, 15.30]. In particular we have the following relationships, which are the main result
of [Kab71].

Lemma 15. For the sequence t we have:

(1) If t is regular then t is Koszul-regular.

(2) If t is Koszul-regular then t is quasi-regular.
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This is proved in [Kab71, Theorem 1.1] and also in [Stacks, Section 15.30]. Although it
is not relevant for our purposes, it is worth pointing out that if R is a Noetherian local ring
any quasi-regular sequence of non-units is necessarily a regular sequence [Stacks, Lemma
10.69.6] and so by Lemma 15 the regularity conditions of Definition 14 are equivalent for
such sequences in Noetherian local rings. Examples presented in [Kab71] show that the
implications in Lemma 15 cannot be reversed in general, or even under some generous
assumptions on the ring R.

Now let k be a commutative ring and suppose R is a k-algebra. The next two results
prove Lemma 5.

Lemma 16. Suppose t is quasi-regular and suppose we have a k-linear map σ : R
/
I → R

such that πσ = 1. Then if we have
∑

u∈Nn σ(ru)tu = 0 for some ru ∈ R
/
I, with finitely

many σ(ru) = 0. Then we necessarily have σ(ru) = 0 for all u ∈ Nn.

Proof. Suppose for a contradiction that not all ru = 0. Given u ∈ Nn let |u| =
∑n

i=1 ui.
We define

m = min{|u| | ru 6= 0}

Rearranging
∑

u∈Nn σ(ru)tu = 0 we have∑
|u|=m

σ(ru)tu = −
∑
m<|u|

σ(ru)tu

which implies
∑
|u|=m σ(ru)tu ∈ Im+1. Hence in Im

/
Im+1 we have∑

|u|=m

σ(ru)tu = 0

Since t is quasi-regular we have σ(ru) ∈ I: if this were not the case then this would give
us a non-zero element of (R

/
I)[x] which is sent to zero by the map α of (3.1). Applying

π gives ru = 0 and hence σ(ru) = 0, proving the claim.

Similar results to the lemma above are also discussed in [Lip87, Chapter 3]. The next
result provides a particularly useful section of the quotient map using a Gröbner basis.

Lemma 17. Fix a monomial ordering on k[x] and suppose t is a Gröbner basis with
respect to this monomial order. Let

V = {r ∈ k[x] | no term of r is divisible by any of the LT(ti)}

Then the quotient map π : k[x]→ k[x]
/
I restricts to an isomorphism V → k[x]

/
I.

Proof. For injectivity suppose r ∈ V is such that π(r) = 0. Applying the division al-
gorithm to divide r by t yields the remainder term r, since none of the terms in r are
divisible by any of the LT(ti). Since r ∈ I, by Lemma 13 we have r = 0.

For surjectivity, consider f ∈ k[x]. Via the division algorithm we obtain an expression
for f of the form

f = r +
n∑

i=1

qiti

where r ∈ V . Then we have π(f) = π(r), and noting that π : k[x] → k[x]
/
I proves the

claim.
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