Differentiation and Division

Rohan Hitchcock

12 September 2022

Let k be a commutative ring and R a k-algebra (soon we will assume k is a field of characteristic zero and R is a polynomial ring). Let $t=\left(t_{1}, \cdots, t_{n}\right)$ be a sequence of elements in R

Last talk we constructed a strong deformation retract involving the Koszul complex of t. This relied on the existence of certain k-linear maps $\partial_{t_{1}}, \ldots, \partial_{t_{n}}: R \rightarrow R$, which together we referred to as a system of t-derivatives. In this talk we will show that such maps exist under certain assumptions on t, and that they can be computed algorithmically. Recall that a system of t-derivatives is defined as follows. Let $k[t]$ denote the k-algebra generated by $1, t_{1}, \ldots, t_{n}$.
Definition 1. Given $t=\left(t_{1}, \ldots, t_{n}\right)$, system of t-derivatives are k-linear maps $\partial_{t_{i}}: R \rightarrow$ $R, i=1, \ldots, n$ which satisfy the following properties:
(1) Every $f \in R$ can be written uniquely in the form

$$
f=\sum_{u \in \mathbb{N}^{n}} r_{u} t^{u}
$$

where each $r_{u} \in \bigcap_{i} \operatorname{ker}\left(\partial_{t_{i}}\right)$ and finitely many $r_{u} \neq 0$.
(2) $\partial_{t_{i}}\left(t^{v}\right)=v_{i} t^{v-e_{i}}$ for all $v \in \mathbb{N}^{n}$ (where we understand that $0 t_{j}^{-1}=0$).
(3) For $f \in k[t]$ and $r \in \bigcap_{i} \operatorname{ker}\left(\partial_{t_{i}}\right)$ we have $\partial_{t_{i}}(r f)=r \partial_{t_{i}}(f)$.

Now suppose that $R=k[x]=k\left[x_{1}, \ldots, x_{m}\right]$. When $n=m$ and $t=x=\left(x_{1}, \ldots, x_{n}\right)$ our construction will recover the usual partial derivative maps $\frac{\partial}{\partial x_{1}}, \ldots, \frac{\partial}{\partial x_{n}}$. In other words our goal is the generalise the notion of taking partial derivatives with respect to the sequence $x=\left(x_{1}, \ldots, x_{n}\right)$ to taking partial derivatives with respect to other sequences in $k[x]$.

This generalisation is motivated by the observation that taking derivatives of polynomials is related to polynomial division. Consider the one variable case $k[x]=k\left[x_{1}\right]$ and let $f \in k[x]$. For another formal variable y one can show that in the polynomial ring $k[x, y]$ we have

$$
f(x)=\sum_{p=1}^{\infty} \frac{1}{p!} f^{(p)}(y)(x-y)^{p}
$$

analogously to the analytic Taylor's Theorem, where $f^{(p)}=\frac{d^{p}}{d x^{p}}(f)$ is the $p^{\text {th }}$ partial derivative of f. Notice that the right-hand-side is a polynomial since eventually $f^{(m)}=0$. Rearranging this we have

$$
f(x)-f(y)=f^{\prime}(y)(x-y)+(x-y)^{2} \sum_{p=2}^{\infty} \frac{1}{p!} f^{(p)}(y)(x-y)^{p-2}
$$

or in other words, $f^{\prime}(y)$ is the remainder of $f(x)-f(y)$ divided by $(x-y)^{2}$. A similar result can be shown in the multivariate case.

1 Iterated Euclidean division

Our first task is to prove a corollary of the division algorithm in $k[x]$. Let k be a field. We begin by recalling some concepts related to polynomial division in the multivariate polynomial ring $k[x]$ following the conventions of [CLO15, Chapter 2]. A monomial in $k[x]$ is any polynomial in the set $\left\{x^{u}\right\}_{u \in \mathbb{N}^{n}}$. A monomial ordering on $k[x]$ is a well-founded, total order relation $<$ on \mathbb{N}^{n} with the property that $u<v \Longrightarrow u+w<v+w$. A typical example of a monomial ordering is the lexicographic ordering on \mathbb{N}^{n}, and others are given in [CLO15, Section 2.2].

Let $f=\sum_{u \in \mathbb{N}^{n}} c_{u} x^{u} \in k[x]$ where $c_{u} \in k$ and finitely many $c_{u} \neq 0$. Any $c_{u} x^{u}$ for which $c_{u} \neq 0$ is called a term of f. Given a monomial ordering on $k[x]$, if $f \neq 0$ we define the multi-degree of f as

$$
\operatorname{multideg}(f)=\max \left\{u \in \mathbb{N}^{n} \mid c_{u} \neq 0\right\}
$$

where the maximum is taken with respect to the monomial ordering. Setting $u^{*}=$ multideg (f) we define the leading term of f with respect to the given monomial ordering to be $\operatorname{LT}(f)=c_{u^{*}} x^{u^{*}}$. The coefficient $c_{u^{*}}$ is called the leading coefficient and is denoted $\mathrm{LC}(f)$. Consider the division algorithm on $k[x]$ given in [CLO15, Theorem 2.3.3]. We recall its properties:

Theorem 2 (Division Algorithm). Let $f, g_{1}, \ldots, g_{m} \in k[x]$ and suppose we have a monomial ordering on $k[x]$ for which $\mathrm{LC}\left(g_{1}\right), \ldots, \mathrm{LC}\left(g_{m}\right)$ are invertible in k. Given such a monomial ordering the division algorithm produces $r, q_{1}, \ldots, q_{m} \in k[x]$ which satisfy
(1)

$$
f=r+\sum_{i=1}^{m} q_{i} g_{i}
$$

(2) None of the terms of r are divisible by any of the $\operatorname{LT}\left(g_{i}\right), i=1, \ldots, m$.
(3) For all $i=1, \ldots, m$ with $q_{i} \neq 0$ we have multideg $(f) \geq \operatorname{multideg}\left(q_{i} g_{i}\right)$.

In [CLO15] the division algorithm theorem is stated under the assumption that k is a field, but by inspecting the algorithm and proof given in [CLO15] one can observe that this hypothesis is only needed so the $\operatorname{LC}\left(g_{i}\right)$ can be inverted.

We show that the division algorithm can be iterated to "completely divide" the coefficients of the divisors g_{1}, \ldots, g_{m} of Theorem 2. The properties of this iterated division algorithm are stated and proved in Theorem 3 and the algorithm itself is given in Algorithm 1.0.4.

Theorem 3. Let $f \in k[x]$ be a polynomial and $g_{1}, \ldots, g_{m} \in k[x]$ be non-constant polynomials. Suppose we have a monomial ordering on $k[x]$ such that $\mathrm{LC}\left(g_{1}\right), \ldots, \mathrm{LC}\left(g_{m}\right)$ are invertible in k. Given this monomial ordering, iteratedDivision $\left(f, g_{1}, \ldots, g_{m}\right)$ in Algorithm 1.0.4 computes an expression of the form

$$
f=\sum_{u \in \mathbb{N}^{n}} r_{u} g^{u}
$$

where $g^{u}=g_{1}^{u_{1}} \cdots g_{m}^{u_{m}}$, all but finitely many of the $r_{u}=0$ and for each $r_{u} \neq 0$, all terms of r_{u} are not divisible by any of the $\operatorname{LT}\left(g_{i}\right), i=1, \ldots, m$.

Proof. Let R_{N} and Q_{N} be the values of R and Q respectively in Algorithm 1.0.4 at the end of the $N^{\text {th }}$ repetition of the loop on line 4 , where we start counting from $N=0$. Let $i\left(Q_{N}\right)$ and $i\left(R_{N}\right)$ be the indices arising in Q_{N} and R_{N} respectively, so $u \in i\left(Q_{N}\right)$ if and only if $(u, q) \in Q_{N}$ for some $q \in k[x]$ and likewise for $i\left(R_{N}\right)$.

We begin by showing that if the algorithm terminates then we obtain an expression of the stated form. First note that every index $u \in \mathbb{N}^{n}$ appears in Q_{N} and R_{N} at most once. That is, $\left|i\left(Q_{N}\right)\right|=\left|Q_{N}\right|$ and $\left|i\left(R_{N}\right)\right|=\left|R_{N}\right|$. Hence we can define

$$
r_{u, N}=\left\{\begin{array}{ll}
0 & u \notin i\left(R_{N}\right) \\
r & \text { where }(u, r) \in R_{N}
\end{array} \quad \text { and } \quad q_{u, N}= \begin{cases}0 & u \notin i\left(Q_{N}\right) \\
q & \text { where }(u, q) \in Q_{N}\end{cases}\right.
$$

We aim to show that for all N we have

$$
f=\sum_{u \in \mathbb{N}^{m}} r_{u, N} g^{u}+\sum_{u \in \mathbb{N}^{m}} q_{u, N} g^{u}
$$

where $g^{u}=g_{1}^{u_{1}} \cdots g_{m}^{u_{m}}$. We proceed by induction on N. The base case is clear if we define R_{-1} and Q_{-1} to be the initial values of R and Q defined prior to line 4 . Now consider the inductive case. For $u \in \mathbb{N}^{m}$ let $|u|=\sum_{i=1}^{m} u_{i}$. Note that if $r_{u, N-1} \neq 0$ then $|u| \leq N-1$ and if $q_{u, N-1} \neq 0$ then $|u| \geq N$. We also have that if $r_{u, N-1} \neq 0$ then $r_{u, N}=r_{u, N-1}$ since we do not remove elements from R. Then we have

$$
\begin{aligned}
f & =\sum_{u:|u|<N} r_{u, N-1} g^{u}+\sum_{u:|u| \geq N} q_{u, N-1} g^{u} \\
& =\sum_{u:|u|<N} r_{u, N} g^{u}+\sum_{u:|u| \geq N}\left(r_{u, N}+\sum_{i=1}^{m} p_{u, i} g_{i}\right) g^{u} \\
& =\sum_{u} r_{u, N} g^{u}+\sum_{u} \sum_{i=1}^{n} p_{u, i} g^{u+e_{i}} \\
& =\sum_{u} r_{u, N} g^{u}+\sum_{u} q_{u, N} g^{u}
\end{aligned}
$$

where $p_{u, 1}, \ldots, p_{u, m}$ are obtained by applying the division algorithm to $q_{u, N-1}$ as on line 7 . Since the algorithm terminates when $Q=\emptyset$ and all $r_{u} \neq 0$ satisfy the required property this proves we have an expression of the desired form on termination.

It remains to prove that the algorithm terminates. We abuse notation and write $q \in Q_{N}$ to mean $(u, q) \in Q_{N}$ for some $u \in \mathbb{N}^{m}$. Now define

$$
b_{N}=\max \left\{\operatorname{multideg}(q) \mid q \in Q_{N}\right\}
$$

where the maximum is taken with respect to the chosen monomial ordering. Consider $q \in Q_{N-1}$ and let p_{1}, \ldots, p_{m} be the polynomials computed from q on line 7. By Theorem 2 we have that multideg $(q) \geq \operatorname{multideg}\left(p_{i} g_{i}\right)$. By hypothesis g_{i} is not a constant polynomial so this implies multideg $(q)>\operatorname{multideg}\left(p_{i}\right)$ and in particular $b_{N-1}>\operatorname{multideg}\left(p_{i}\right)$. Now, the elements of Q_{N} consist of sums of the various p_{1}, \ldots, p_{m} generated on line 7. Since for any $s+t \neq 0$ we have multideg $(s+t) \leq \max \{\operatorname{multideg}(s), \operatorname{multideg}(t)\}[\operatorname{CLO} 15$, Lemma 2.2.8] it follows that for any $q^{\prime} \in Q_{N}$ that multideg $\left(q^{\prime}\right)<b_{N-1}$. Therefore $b_{N}<b_{N-1}$ and since monomial orderings are well-founded the algorithm terminates.

```
Algorithm 1.0.4 Iterated Division Algorithm
Require: A polynomial \(f \in k[x]\), non-constant polynomials \(g_{1}, \ldots, g_{m} \in k[x]\), and a
    monomial ordering on \(k[x]\) such that \(\mathrm{LC}\left(g_{1}\right), \ldots, \mathrm{LC}\left(g_{m}\right)\) are invertible in \(k\).
    procedure iteratedDivision \(\left(f, g_{1}, \ldots, g_{m}\right)\)
        \(Q \leftarrow\{(\overrightarrow{0}, f)\} \quad \triangleright \overrightarrow{0}=(0, \ldots, 0) \in \mathbb{N}^{m}\)
        \(R \leftarrow \emptyset\)
        while \(Q \neq \emptyset\) do
            \(Q_{\text {new }} \leftarrow \emptyset\)
            for all \((u, q) \in Q\) do
                    Apply the division algorithm to obtain \(r, p_{1}, \ldots, p_{m} \in k[x]\) satisfying
\[
q=r+\sum_{i=1}^{m} p_{i} g_{i}
\]
along with the other conditions in Theorem 2.
\[
Q_{\text {new }} \leftarrow Q_{\text {new }} \cup\left\{\left(u+e_{i}, p_{i}\right) \mid i=1, \ldots, m \text { where } p_{i} \neq 0\right\}
\]
\[
R \leftarrow\{(u, r)\} \cup R
\]
\[
Q \leftarrow \operatorname{ColLECtTERMS}\left(Q_{\text {new }}\right)
\]
        return \(R\)
    function CollectTerms(Q)
        \(Q_{\text {collected }} \leftarrow \emptyset\)
        for all \(u\) where \((u, p) \in Q\) for some \(p\) do
            Let \(p_{1}, \ldots, p_{s}\) be all the polynomials such that \(\left(u, p_{i}\right) \in Q\)
            if \(\sum_{i=1}^{s} p_{i} \neq 0\) then
            \(Q_{\text {collected }} \leftarrow\left\{\left(u, \sum_{i=1}^{s} p_{i}\right)\right\} \cup Q_{\text {collected }}\)
        return \(Q_{\text {collected }}\)
```


2 Differentiating with respect to a sequence of polynomials

Fix a monomial ordering $>_{x}$ on $k[x]$. We extend this to a monomial ordering on $k[x, y]=$ $k\left[x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{m}\right]$ as follows. Let $(a, b),\left(a^{\prime}, b^{\prime}\right) \in \mathbb{N}^{m} \times \mathbb{N}^{m}$ where $a=\left(a_{1}, \ldots, a_{m}\right) \in$ \mathbb{N}^{m} and likewise for b, a^{\prime} and b^{\prime}. We define

$$
(a, b)>_{x, y}\left(a^{\prime}, b^{\prime}\right) \equiv a>_{x} a^{\prime} \text { or }\left(a=a^{\prime} \text { and } b>_{x} b^{\prime}\right)
$$

That is $>_{x, y}$ is the lexicographic ordering on $\mathbb{N}^{m} \times \mathbb{N}^{m}$ given by considering $>_{x}$ on each factor. This is clearly a monomial ordering on $k[x, y]$ which agrees with the monomial order on $k[x]$ when restricted to monomials involving only x-variables, and for which $x_{i}>y_{j}$ for all $i, j=1, \ldots, m$. In particular $\operatorname{LT}_{x}(f(x))=\operatorname{LT}_{x, y}(f(x)+f(y))$ for all $f \in k[x]$. From now on we dispense with distinguishing between $>_{x}$ and $>_{x, y}$ and simply use $>$ and LT to refer to both monomial orderings.

Consider a sequence $t=\left(t_{1}, \ldots, t_{n}\right)$ in $k[x]$ and suppose it is both quasi-regular and a Gröbner basis for its ideal (see Section 3). We define $T_{i}=t_{i}(x)-t_{i}(y)$ and consider the sequence $T=\left(T_{1}, \ldots, T_{n}\right)$ in $k[x, y]$. One can show that T is quasi-regular, and assume that T is also a Gróbner basis for its ideal (is this also automatic?).

The reason for these assumptions is that the sequences t and T have the following property.

Lemma 5. Let $f \in k[x]$. Suppose we have an expression for f of the form

$$
f=\sum_{u \in \mathbb{N}^{n}} r_{u} t^{u}
$$

where finitely many $r_{u} \neq 0$ and for all r_{u}, all terms of r_{u} are not divisible by any of the $\mathrm{LT}\left(t_{i}\right)$. Then all the coefficients r_{u} are uniquely determined by f. Likewise for $F \in k[x, y]$, in any expression for F of the form

$$
F=\sum_{u \in \mathbb{N}^{n}} R_{u} T^{u}
$$

where finitely many $R_{u} \neq 0$ and no term of R_{u} is divisible by any of the $\operatorname{LT}\left(T_{i}\right)=\operatorname{LT}\left(t_{i}\right)$, the coefficients R_{u} are uniquely determined by F.

Proof. See Section 3.
Note that the expressions in the above lemma are exactly the expressions computed by the iterated division algorithm.

Given $f \in k[x]$ write

$$
f(x)-f(y)=\sum_{u \in \mathbb{N}^{n}} r_{u} T^{u}
$$

where the $r_{u} \in k[x, y]$ are the unique polynomials satisfying the conditions in Lemma 5. For each $u \in \mathbb{N}^{n}$ define a map $\rho_{u}: k[x] \rightarrow k[x, y]$ by setting $\rho_{u}(f)=r_{u}$. We now prove some facts about these maps. For $u, v \in \mathbb{N}^{n}$ define $u!=u_{1}!u_{2}!\cdots u_{n}!$ and

$$
\binom{v}{u}= \begin{cases}0 & \text { if any } v_{i}-u_{i}<0 \\ \frac{v!}{u!(v-u)!} & \text { otherwise }\end{cases}
$$

Lemma 6. ρ_{u} is k-linear.

Proof. Let $f, g \in k[x]$. Then we can write

$$
(f+g)(x)-(f+g)(y)=\sum_{u \in \mathbb{N}^{n}}\left(\rho_{u}(f)+\rho_{u}(g)\right) T^{u}
$$

Now, if $\rho_{u}(f)+\rho_{u}(g) \neq 0$ then no term of $\rho_{u}(f)+\rho_{u}(g)$ is divisible by any of the $\operatorname{LT}\left(T_{i}\right)$. Hence the right-hand-side satisfies the conditions in Lemma 5 and so by uniqueness $\rho_{u}(f+$ $g)=\rho_{u}(f)+\rho_{u}(g)$. Likewise $\rho_{u}(c f)=c \rho_{u}(f)$ for $c \in k$.

Lemma 7. $\rho_{u}\left(t^{v}\right)=\binom{v}{u} t^{v-u}(y)$ for all $v \in \mathbb{N}^{n}$ and $u \neq 0$.
Proof. It suffices to prove that

$$
\begin{equation*}
t^{v}(x)=\sum_{u}\binom{v}{u} t^{v-u}(y) T^{u} \tag{2.1}
\end{equation*}
$$

Indeed, having shown (2.1) holds we have

$$
t^{v}(x)-t^{v}(y)=\sum_{u \neq 0}\binom{v}{u} t^{v-u}(y) T^{u}
$$

where we note that no term of $t^{v-u}(y)$ is divisible by any of the $\operatorname{LT}\left(T_{i}\right)=\operatorname{LT}\left(t_{i}(x)\right)$.
We proceed by induction on $|v|=\sum_{i} v_{i}$. If $v=0$ then both sides of (2.1) are equal to 1 . Now suppose that $|v| \geq 1$. Let i be such that $v_{i}>0$. Then, using the induction hypothesis, we have

$$
\begin{aligned}
t^{v}(x) & =t_{i}(x) t^{v-e_{i}}(x) \\
& =t_{i}(x) \sum_{u}\binom{v-e_{i}}{u} t^{v-e_{i}-u}(y) T^{u} \\
& =\left(t_{i}(y)+T_{i}\right) \sum_{u}\binom{v-e_{i}}{u} t^{v-e_{i}-u}(y) T^{u} \\
& =\sum_{u}\binom{v-e_{i}}{u} t^{v-u}(y) T^{u}+\sum_{u}\binom{v-e_{i}}{u} t^{v-e_{i}-u}(y) T^{u+e_{i}} \\
& =\sum_{u}\binom{v-e_{i}}{u} t^{v-u}(y) T^{u}+\sum_{u \neq 0}\binom{v-e_{i}}{u-e_{i}} t^{v-u}(y) T^{u} \\
& =t^{v}(y)+\sum_{u \neq 0}\left(\binom{v-e_{i}}{u}+\binom{v-e_{i}}{u-e_{i}}\right) t^{v-u}(y) T^{u} \\
& =t^{v}(y)+\sum_{u \neq 0}\binom{v}{u} t^{v-u}(y) T^{u} \\
& =\sum_{u}\binom{v}{u} t^{v-u}(y) T^{u}
\end{aligned}
$$

which proves the claim.
Lemma 8. Let $f \in k[t]$ and $r \in k[x]$ be such that no term of r is divisible by any of the $\mathrm{LT}\left(t_{i}\right)$. Then for $u \neq 0$ we have $\rho_{u}(r f)=r(x) \rho_{u}(f)$.

Proof. It suffices to prove this for $f=t^{v}$ for $v \in \mathbb{N}^{n}$. Using Lemma 7 we have

$$
\begin{aligned}
r(x) t^{v}(x)-r(y) t^{v}(y) & =r(x) t^{v}(x)-r(x) t^{v}(y)+r(x) t^{v}(y)-r(y) t^{v}(y) \\
& =r(x)\left(t^{v}(x)-t^{v}(y)\right)+(r(x)-r(y)) t^{v}(y) \\
& =r(x) \sum_{u \neq 0}\binom{v}{u} t^{v-u}(y) T^{u}+(r(x)-r(y)) t^{v}(y) \\
& =(r(x)-r(y)) t^{v}(y)+\sum_{u \neq 0}\binom{v}{u} r(x) t^{v-u}(y) T^{u}
\end{aligned}
$$

Notice that $\operatorname{LT}\left(t_{j}\right)=\operatorname{LT}\left(T_{j}\right)$ does not divide any term of $(r(x)-r(y)) t^{v}(y)$ or $\binom{v}{u} r(x) t^{v-u}(y)$ for all $j=1, \ldots, n$ and $u \in \mathbb{N}^{n}$. Hence by Lemma 5 this proves the claim.

Now let $e_{i} \in \mathbb{N}^{n}$ have a 1 in the $i^{\text {th }}$ coordinate and 0 elsewhere and let $\varphi: k[x, y] \rightarrow k[x]$ be the k-algebra morphism identifying x and y. For each t_{i} we define a map $\partial_{t_{i}}: k[x] \rightarrow$ $k[x]$ by setting $\partial_{t_{i}}(f)=\varphi \rho_{e_{i}}(f)$.

Proposition 9. The maps $\partial_{t_{i}}, \ldots, \partial_{t_{i}}: k[x] \rightarrow k[x]$ form a system of t-derivatives as defined in Definition 1.

Proof. We need to show that $\partial_{t_{1}}, \ldots, \partial_{t_{n}}$ are k-linear and satisfy
(1) Every $f \in k[x]$ can be written uniquely in the form

$$
f=\sum_{u \in \mathbb{N}^{n}} r_{u} t^{u}
$$

where $r_{u} \in \bigcap_{i} \operatorname{ker}\left(\partial_{t_{i}}\right)$.
(2) $\partial_{t_{i}}\left(t^{v}\right)=v_{i} t^{v-e_{i}}$ for all $v \in \mathbb{N}^{n}$ (where we understand that $0 t_{j}^{-1}=0$).
(3) For $f \in k[t]$ and $r \in \bigcap_{i} \operatorname{ker}\left(\partial_{t_{i}}\right)$ we have $\partial_{t_{i}}(r f)=r \partial_{t_{i}}(f)$.

That $\partial_{t_{1}}, \ldots, \partial_{t_{n}}$ are k-linear, and properties (2) and (3) follow directly from Lemma 6, Lemma 7 and Lemma 8 respectively. For (1) note that we can write any $f \in k[x]$ in the form

$$
f(x)=\sum_{u} r_{u}(x) t^{u}(x)
$$

where if $r_{u} \neq 0$ then no term of r_{u} is divisible by any of the $\operatorname{LT}\left(t_{i}\right)$. This expression exists by Theorem 3 and is unique by the assumption on t, and note that $\rho_{e_{i}}\left(r_{u}\right)=0$ for all u by Lemma 5 .

Proposition 9 is the main result of this section, but before continuing we note some other properties of the maps $\partial_{t_{1}}, \ldots, \partial_{t_{n}}$ defined in Proposition 9. As noted previously, since $\partial_{t_{1}}, \ldots, \partial_{t_{n}}$ is a system of t-derivatives we have $\partial_{t_{i}} \partial_{t_{j}}=\partial_{t_{j}} \partial_{t_{i}}$ for all i, j. Hence for $a \in \mathbb{N}^{n}$ we define $\partial_{t}^{a}=\partial_{t_{1}}^{a_{1}} \cdots \partial_{t_{n}}^{a_{n}}$. The next result is analogous to Taylor's Theorem.

Proposition 10. $\partial_{t}^{a}=a!\varphi \rho_{a}$ for all $a \neq 0$.
Proof. Let $f \in k[x]$ and write

$$
f(x)=\sum_{u} r_{u}(x) t^{u}(x)
$$

where finitely many $r_{u} \neq 0$ and if $r_{u} \neq 0$ then no term of r_{u} is divisible by any of the $\operatorname{LT}\left(t_{i}\right)$. By Lemma 7 we have $\rho_{a}\left(t^{u}\right)=\binom{u}{a} t^{u-a}(y)$ and so

$$
\begin{aligned}
\partial_{t}^{a}(f) & =\sum_{u} a!\binom{u}{a} r_{u}(x) t^{u-a}(x) \\
& =a!\sum_{u} r_{u}(x) \varphi \rho_{a}\left(t^{u}\right) \\
& =a!\sum_{u} \varphi \rho_{a}\left(r_{u} t^{u}\right) \\
& =a!\varphi \rho_{a}(f)
\end{aligned}
$$

where we have that $r_{u}(x) \rho_{a}\left(t^{u}\right)=\rho_{a}\left(r_{u} t^{u}\right)$ by Lemma 8.
Let $f \in k[x]$. Clearly one way to compute $\partial_{t_{i}}(f)$ is to use Algorithm 1.0.4 to compute an expression for f of the form

$$
f(x)=\sum_{u} r_{u}(x) t^{u}(x)
$$

where finitely many $r_{u} \neq 0$ and if $r_{u} \neq 0$ then no term of r_{u} is divisible by any of the $\operatorname{LT}\left(t_{i}\right)$. We then have

$$
\partial_{t_{i}}(f)=\sum_{u} r_{u}(x) u_{i} t^{u-e_{i}}(x)
$$

This approach needs many calls to the division algorithm as the whole expansion of $f(x)$ in terms of $t_{1}(x), \ldots, t_{n}(x)$ must be computed. A more efficient approach which only calls the division algorithm twice is given in Algorithm 2.0.11, in which $\partial_{t_{j}}(f)=$ differentiate $\left(f, j, t_{1}, \ldots, t_{n}\right)$.

```
Algorithm 2.0.11 Computing \(\partial_{t_{j}}\)
    procedure difFERENTIATE \(\left(f, j, t_{1}, \ldots, t_{n}\right)\)
        Use the division algorithm in \(k[x, y]\) to obtain \(r(x, y), q_{1}(x, y), \ldots, q_{n}(x, y)\) satisfy-
    ing
\[
f(x)-f(y)=r(x, y)+\sum_{i=1}^{n} q_{i}(x, y)\left(t_{i}(x)-t_{i}(y)\right)
\]
along with the other conditions in Theorem 2.
Use the division algorithm in \(k[x, y]\) to obtain \(r^{\prime}(x, y), p_{1}(x, y), \ldots, p_{n}(x, y)\) satisfying
\[
q_{j}(x, y)=r^{\prime}(x, y)+\sum_{i=1}^{n} p_{i}(x, y)\left(t_{i}(x)-t_{i}(y)\right)
\]
4: return \(\varphi\left(r^{\prime}(x, y)\right)\)
```


3 Appendix regarding the conditions on t

We first recall the concept of a Gröbner basis.
Definition 12. Fix a monomial ordering on $k[x]$ and let $I=\left(g_{1}, \ldots, g_{n}\right)$ be an ideal. Consider the set of leading terms of elements of I :

$$
\operatorname{LT}(I)=\{\operatorname{LT}(f) \mid f \in I \backslash\{0\}\}
$$

We say that t_{1}, \ldots, t_{n} is a Gröbner basis for I if the ideal generated by $\operatorname{LT}(I)$ is equal to $\left(\operatorname{LT}\left(t_{1}\right), \ldots, \operatorname{LT}\left(t_{n}\right)\right)$. Given a sequence $t=\left(t_{1}, \ldots, t_{n}\right)$ we say that t is a Gröbner basis to mean that t is a Gröbner basis for the ideal its elements generate.

Lemma 13 ([CLO15, Corollary 2.6.2]). Let $f \in k[x]$. If t is a Gröbner basis then when we apply the division algorithm to divide f by t, the remainder term is zero if and only if $f \in I$.

Note that the property of being a Gröbner basis is depends on the monomial ordering on $k[x]$. One can show that given a monomial ordering on $k[x]$ and an ideal I there always exists a Gröbner basis for that ideal [CLO15, Corollary 2.5.6], and moreover a Gröbner basis can be computed from a finite generating set for I via an algorithm called Buchberger's Algorithm [CLO15, Theorem 2.7.2]. For more on Gröbner basis see [CLO15, Chapter 2].

Next we discuss quasi-regular sequences. Let R be a commutative ring and $t=$ $\left(t_{1}, \ldots, t_{n}\right)$ a sequence of elements in R. We denote by $I=\left(t_{1}, \cdots, t_{n}\right)$ the ideal generated by the elements of t. Consider the polynomial ring $(R / I)[x]=(R / I)\left[x_{1}, \cdots, x_{n}\right]$ with coefficients in R / I. We define a map

$$
\begin{equation*}
\alpha:(R / I)[x] \longrightarrow \bigoplus_{m \geq 0} I^{m} / I^{m+1} \tag{3.1}
\end{equation*}
$$

by setting $\alpha\left(x_{i}\right)=t_{i}+I^{2}$, where we denote $I^{0}=R$ by mild abuse of notation. This map is always surjective. Indeed, consider $t^{u}+I^{m+1} \in I^{m} / I^{m+1}$ where $u \in \mathbb{N}^{n}$ is such that $\sum_{i=1}^{n} u_{i}=m$. It is straightforward to show that $\alpha\left(x^{u}\right)=t^{u}+I^{m+1}$. Noting that any element of I^{m} / I^{m+1} can be written as a sum of elements of the form $a t^{u}+I^{m+1}$ where $a \in R$ is not divisible by any of the t_{i} and applying linearity proves that α is surjective.

The definition of quasi-regular should be seen in the context of the other regularity conditions on sequences. Recall that part of the definition of a potential was that its sequence of partial derivatives is Koszul-regular.

Definition 14. We say the sequence t is:
(1) regular if each t_{i} is not a zero-divisor on $R /\left(t_{1}, \ldots, t_{i-1}\right)$, and if the ring R / I is non-zero.
(2) Koszul-regular if the Koszul complex of t is exact except in degree zero.
(3) quasi-regular if the map α at (3.1) is an isomorphism.

The definition of Koszul-regular was first given in [Kab71, Definition 1] and the definition of quasi-regular was first given in [EGA, Volume IV Chapitre 0 15.1.7]. These regularity conditions and their relationships are also discussed in [Stacks, Sections 10.68, $10.69,15.30]$. In particular we have the following relationships, which are the main result of [Kab71].

Lemma 15. For the sequence t we have:
(1) If t is regular then t is Koszul-regular.
(2) If t is Koszul-regular then t is quasi-regular.

This is proved in [Kab71, Theorem 1.1] and also in [Stacks, Section 15.30]. Although it is not relevant for our purposes, it is worth pointing out that if R is a Noetherian local ring any quasi-regular sequence of non-units is necessarily a regular sequence [Stacks, Lemma 10.69.6] and so by Lemma 15 the regularity conditions of Definition 14 are equivalent for such sequences in Noetherian local rings. Examples presented in [Kab71] show that the implications in Lemma 15 cannot be reversed in general, or even under some generous assumptions on the ring R.

Now let k be a commutative ring and suppose R is a k-algebra. The next two results prove Lemma 5.

Lemma 16. Suppose t is quasi-regular and suppose we have a k-linear map $\sigma: R / I \rightarrow R$ such that $\pi \sigma=1$. Then if we have $\sum_{u \in \mathbb{N}^{n}} \sigma\left(r_{u}\right) t^{u}=0$ for some $r_{u} \in R / I$, with finitely many $\sigma\left(r_{u}\right)=0$. Then we necessarily have $\sigma\left(r_{u}\right)=0$ for all $u \in \mathbb{N}^{n}$.

Proof. Suppose for a contradiction that not all $r_{u}=0$. Given $u \in \mathbb{N}^{n}$ let $|u|=\sum_{i=1}^{n} u_{i}$. We define

$$
m=\min \left\{|u| \mid r_{u} \neq 0\right\}
$$

Rearranging $\sum_{u \in \mathbb{N}^{n}} \sigma\left(r_{u}\right) t^{u}=0$ we have

$$
\sum_{|u|=m} \sigma\left(r_{u}\right) t^{u}=-\sum_{m<|u|} \sigma\left(r_{u}\right) t^{u}
$$

which implies $\sum_{|u|=m} \sigma\left(r_{u}\right) t^{u} \in I^{m+1}$. Hence in I^{m} / I^{m+1} we have

$$
\sum_{|u|=m} \sigma\left(r_{u}\right) t^{u}=0
$$

Since t is quasi-regular we have $\sigma\left(r_{u}\right) \in I$: if this were not the case then this would give us a non-zero element of $(R / I)[x]$ which is sent to zero by the map α of (3.1). Applying π gives $r_{u}=0$ and hence $\sigma\left(r_{u}\right)=0$, proving the claim.

Similar results to the lemma above are also discussed in [Lip87, Chapter 3]. The next result provides a particularly useful section of the quotient map using a Gröbner basis.

Lemma 17. Fix a monomial ordering on $k[x]$ and suppose t is a Gröbner basis with respect to this monomial order. Let

$$
V=\left\{r \in k[x] \mid \text { no term of } r \text { is divisible by any of the } \operatorname{LT}\left(t_{i}\right)\right\}
$$

Then the quotient map $\pi: k[x] \rightarrow k[x] / I$ restricts to an isomorphism $V \rightarrow k[x] / I$.
Proof. For injectivity suppose $r \in V$ is such that $\pi(r)=0$. Applying the division algorithm to divide r by t yields the remainder term r, since none of the terms in r are divisible by any of the $\operatorname{LT}\left(t_{i}\right)$. Since $r \in I$, by Lemma 13 we have $r=0$.

For surjectivity, consider $f \in k[x]$. Via the division algorithm we obtain an expression for f of the form

$$
f=r+\sum_{i=1}^{n} q_{i} t_{i}
$$

where $r \in V$. Then we have $\pi(f)=\pi(r)$, and noting that $\pi: k[x] \rightarrow k[x] / I$ proves the claim.

References

[CLO15] David A. Cox, John Little and Donal O'Shea. Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra. Undergraduate Texts in Mathematics. Cham: Springer International Publishing, 2015.
[EGA] Alexander Grothendieck and Jean Dieudonné. Éléments de géométrie algébrique. Institut des Hautes Études Scientifiques, 1961-1967.
[Kab71] Thomas Kabele. 'Regularity conditions in nonnoetherian rings'. In: Transactions of the American Mathematical Society 155.2 (1 Feb. 1971), pp. 363-374.
[Lip87] Joseph Lipman. Residues and Traces of Differential Forms via Hochschild Homology. Vol. 61. Contemporary Mathematics. Providence, R.I: American Mathematical Society, 1987. 95 pp.
[Stacks] The Stacks Project. URL: https://stacks.math.columbia.edu/ (visited on 06/12/2021).

