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In this talk we revisit the cut operation on morphisms in the bicategory of Landau-
Ginzburg models. Let k be a field of characteristic zero and consider 1-morphisms

(X,dx) (Y,dy)

(kla],U) (klyl, V) (k[z], W)

Let k[y] = klyi, - - ., yn). We consider the sequence of partial derivatives t = (9, V, ..., 0, V)
and the ideal I = (¢,...,t,). Since V is a potential ¢ is Koszul-regular, hence quasi-
regular. Recall that the cut of (X, dx) and (Y, dy) is the matrix factorisation (Y'|.X, dy|x)

of W(z) — U(x) where
Y|X:X®k[y] JV ®]€[y}Y and dy|X :dx®1+1®dy

where Jy = k[y] /1 is the Jacobi ring. In the talk on composition we showed that the cut
has the composition (X®yp)y,dxey) as a direct summand. Our goal for this talk is to
show how the composition is a direct summand of the cut by producing an explicit strong
deformation retract

(YX,dyx) ——= (Ak"") @ X Ry V.1 @ dxay), H

In the previous talk we showed how to construct a system of t-derivatives 0O, , ..., 0, :
kly] — k[y] in the case that ¢ was a Grobner basis for I. We now suppose this is the case.
The general case proceeds in a similar way but requires passing to the /-adic completion
of k[y]. If we are required to pass to the completion then only approximations (in the
I-adic topology) of 0,,, ..., 0, can actually be computed algorithmically, while when ¢ is
a Grobner basis all maps involved can be computed exactly.

We consider the Koszul complex (K (t),dk ), and as in previous talks we denote K (t) =
N(D._, kdt;) where dty,...,dt, are formal generators. Let V : K(t) — K(t) be given
by V(fw) =31, 0, (f)dtiw where f € k[y] and w = dt;, ---dt;,. In a previous talk we
showed that we have a strong deformation retract over k

(Jv,0) E—— (K(t),dx),  h

where 7 is the quotient map in degree zero, h = [dx, V]™!V and ¢ is uniquely determined
by m and V. Recall that 7 is k[y]-linear while o and h are only k-linear.

The strong deformation retract above is the starting point for defining cut operation.
We tensor the deformation retract by X ®yp,,) Y and mix the differential dxgy using the
Perturbation Lemma. We fix a k[z, z]-basis for X ®;,; Y of the form {e, ® fi}qs and
define a strong deformation retract

T®1 ~
(YX,0) &——= (K(t) @y X Qppy Y, dx ® 1), h

g



over k[x, z] where G(e, @ r® f,) = 0(r) ® e, ® fp and h(g @ e, ® fi) = h(g) @ eq & fp.

Now set d = 1 ® dxgy and view d as a perturbation of the above strong deformation
retract. Let a = (1 — dﬁ)_ld, and since dh is nilpotent since it is a degree —1 map with
respect to the Z-grading on K(t). It is not hard to check (we have also shown this in
previous talks) that (1 — dh)~! = 3 .,(dh)". By the Perturbation Lemma we have a
strong deformation retract -

(YIX, dyix) S (K(t) @y X @pgy Vidg @ 141@d),  heo

over k[z,y], where 0o, = 6 4 haé, oo = 7@ 1+ (1@ 1)ah and ho, = h+ hah. In fact one

can show via a direct calculation that (7 ® 1)ah = 0 and so 7o, = 7™ ® 1. The maps o0
and h. can be written more conveniently as

O =06 +hY (dh)'ds =) (hd)s

1>0 1>0

and

hoo = h+hY (dh)'dh =" (hd)h

1>0 >0

It remains to remove the differential dx ® 1. In a previous talk we showed that we
had an isomorphism of linear factorisations

(K(t) @rpy) Z,dxe @ 1+ 1®dg) = K(t) Q) 2,1 @ dz)

for any appropriate linear factorisation (Z,dz). It has now come time to explicitly state
this isomorphism.

Let (Z,dz) = (X®4p)Y, dxey). Recall that we have shown that ¢; acts null-homotopically
on Z, so let \; : t; ~ 0 be such a homotopy (one example is \; = 0;,(dx)). Next note that
we have a canonical isomorphism « : K(t) Qg Z — N, kb;) @i Z where 6; = dt;.
We define

exp(d) = Z %5’” and exp(—0) = Z ﬂ&’"

! m!
m>0 m>0

where 6 = Y | A\;07. This definition makes sense because ¢ is nilpotent: with respect to
the Z-grading on A\(P)_, k0;) we sce that 0 has degree —1, and A(D._, k0;) is zero in
negative degree. The next result is [Murl8, Proposition 4.12].

Lemma 1. The map
exp(6) : (A(BiZy k) @k Z,dx + dz) —— (NBiZ; k) @ Z,dz)

is an isomorphism with inverse exp(—d).

Proof. Clearly exp(d) and exp(—0d) are mutually inverse isomorphisms of modules so it
suffices to show that they commute with the differentials. We first show that [dz, 0™] =
mo™ tdyx for m > 1. When m = 1 we have

n

[dz,0] = [dz, N6y =t} = dx
i=1

=1



Now consider m > 1. First note that

m—1
Z 61 [dZa 5}5m—i—1
=0

m—1 m—1
5'd25m—i _ Z 6i+1dzé‘m—i—1
0 =0

i=

I
MS

5mz Z&zd 6mz

I§
o

7

= [dz,6™]
Then we have
m—1 m—1 m—1
[dz, ™) =) 0'[dz, 6)6™ " =) D o'dam T =) 6" e = m™ i
1=0 1=0 =0

as claimed. Next we compute [dz, exp(—d)]. We have
7 exp@)] = 3 i ld707) = Y ot = exp(d)d
m>0 m>1
Rearranging this expression we find
exp(0)(dz + di) = dz exp(9)
which shows exp(d) is a morphism of linear factorisations as required. n
Putting all this together we have constructed a strong deformation retract
o

(YX, dyx) —>® (ANDZ, ki) @k X @iy YV, 1 @ dxey),  H

over k[z, z], where 0y, . . ., 0, are formal generators, ® = exp(§)acy, ' = (7®@1)a~! exp(—9J)
and H = exp(d)ahsa™! exp(—4).

Passing to the completion

Forget that k is a field and suppose k be a commutative ring. Consider a sequence s =
(S1,.+.,8m) in k[y] and the ideal J = (s1,...,s,). Let k[y] denote the J-adic completion
of kly|.

Lemma 2. Suppose s is quasi- regular and that there exists a k-linear section o : k:[y]/J —

kly] of the quotient map w : k[y] — R/J. Then every f € k:[ | can be written uniquely as
a J-adic convergent series in of the form

where 7, € R/ J and s* = s{* -+ - st

Lemma 2 is the key result which allows us to construct a system of ¢-derivatives over
the completion. Let ¢ be as in the previous section. Note that we always have a k-linear
section o : Jy — k[y| of the quotient map since Jy is free over k; Jy is in particular
projective over k so the sequence

0 i >

=~

=
-
<
o



splits over k. Furthermore we can choose o such that o(1) = 1.

—_—

This lets us define maps 0y, ..., 0, : kly] — k/:[y\] as

- S uetr v £= 3 ot

ueNn? wEN™

These possess analogous properties to the system of t-derivatives we have constructed
Brgviously. Essentially the same results can be proved, replacing k[y] with the completion
kly].

When £ is a field we can choose a section ¢ in such a way that the coefficients can be
computed algorithmically. Let fix a monomial ordering on kly] and let g be a Grébner
basis for /. Let

V = {r € kly] | no term of r is divisible by any of the LT(g;)}

Lemma 3. The quotient map 7 : kly] — kly]/I restricts to an isomorphism V — k[y] /1.

Proof. For injectivity suppose r € V is such that 7(r) = 0. Applying the division al-
gorithm to divide r by ¢ yields the remainder term r, since none of the terms in r are
divisible by any of the LT(g;). Since r € I and g is a Grober basis we have r = 0. Note
that if ¢ is not a Grobner basis then the restriction 7|y will fail to be injective.

For surjectivity, consider f € k[y]. Via the division algorithm we obtain an expression

for f of the form
f=r+) ay

where 7 € V. Then we have 7(f) = 7(r), and noting that 7 : k[y] — k[y] /I is surjective
proves the claim. O

Lemma 4. Any element f € k/[gj] can be uniquely expressed as a series of the form

where r, € V.

We now consider an algorithm to generate the coefficients in the series expansion of
an element f € k[y]. The idea is as follows. Let {a;;};; be the polynomials arising from
Buchberger’s algorithm which satisfy ¢g; = Z;L L aiitj. Given f € k[y] we can divide f by
¢ to obtain polynomials rq € C' and ¢, ...,qy € k[y ] satisfying

—T0+Z€hgz —7"0+Z (Z%‘j%) tj

i=1

/

Setting p; = >, aijg;, we can then divide each of the py,...,p, by ¢ to obtain polyno-
mials r; € C and ¢y 5,...,qv,; € k[y] for j =1,..., n satisfying

—To-I—ZT’]t +Zqugzt —To—f—ZT]t —I—Z (unazl>ttl

j=1 i=1 7,l=1

The polynomials rq,rq,...,r, € C are the coefficients of the zeroth and first order terms
in the series expansion for f. and we can continue to generate higher order coefficients
in this manner. In general this algorithm will not terminate. One can show this process
terminates when the {a;;};; are all constant polynomials.
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