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In this talk we revisit the cut operation on morphisms in the bicategory of Landau-
Ginzburg models. Let k be a field of characteristic zero and consider 1-morphisms

(k[x], U) (k[y], V ) (k[z],W )
(X, dX) (Y , dY )

Let k[y] = k[y1, . . . , yn]. We consider the sequence of partial derivatives t = (∂t1V, . . . , ∂tnV )
and the ideal I = (t1, . . . , tn). Since V is a potential t is Koszul-regular, hence quasi-
regular. Recall that the cut of (X, dX) and (Y, dY ) is the matrix factorisation (Y |X, dY |X)
of W (z)− U(x) where

Y |X = X ⊗k[y] JV ⊗k[y] Y and dY |X = dX ⊗ 1 + 1⊗ dY

where JV = k[y]
/
I is the Jacobi ring. In the talk on composition we showed that the cut

has the composition (X⊗k[y]Y , dX⊗Y ) as a direct summand. Our goal for this talk is to
show how the composition is a direct summand of the cut by producing an explicit strong
deformation retract

(Y |X, dY |X) (
∧

(k⊕n)⊗k X ⊗k[y] Y, 1⊗ dX⊗Y ), H

In the previous talk we showed how to construct a system of t-derivatives ∂t1 , . . . , ∂tn :
k[y]→ k[y] in the case that t was a Gröbner basis for I. We now suppose this is the case.
The general case proceeds in a similar way but requires passing to the I-adic completion
of k[y]. If we are required to pass to the completion then only approximations (in the
I-adic topology) of ∂t1 , . . . , ∂tn can actually be computed algorithmically, while when t is
a Gröbner basis all maps involved can be computed exactly.

We consider the Koszul complex (K(t), dK), and as in previous talks we denote K(t) =∧
(
⊕n

i=1 kdti) where dt1, . . . , dtn are formal generators. Let ∇ : K(t) → K(t) be given
by ∇(fω) =

∑n
i=1 ∂ti(f)dtiω where f ∈ k[y] and ω = dti1 · · · dtip . In a previous talk we

showed that we have a strong deformation retract over k

(JV , 0) (K(t), dK), h
σ

π

where π is the quotient map in degree zero, h = [dK ,∇]−1∇ and σ is uniquely determined
by π and ∇. Recall that π is k[y]-linear while σ and h are only k-linear.

The strong deformation retract above is the starting point for defining cut operation.
We tensor the deformation retract by X ⊗k[y] Y and mix the differential dX⊗Y using the
Perturbation Lemma. We fix a k[x, z]-basis for X ⊗k[y] Y of the form {ea ⊗ fb}a,b and
define a strong deformation retract

(Y |X, 0) (K(t)⊗k[y] X ⊗k[y] Y, dK ⊗ 1), h̃
σ̃

π⊗1
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over k[x, z] where σ̃(ea ⊗ r ⊗ fb) = σ(r)⊗ ea ⊗ fb and h̃(g ⊗ ea ⊗ fb) = h(g)⊗ ea ⊗ fb.
Now set d = 1⊗ dX⊗Y and view d as a perturbation of the above strong deformation

retract. Let a = (1 − dh̃)−1d, and since dh̃ is nilpotent since it is a degree −1 map with
respect to the Z-grading on K(t). It is not hard to check (we have also shown this in
previous talks) that (1 − dh̃)−1 =

∑
l≥0(dh̃)l. By the Perturbation Lemma we have a

strong deformation retract

(Y |X, dY |X) (K(t)⊗k[y] X ⊗k[y] Y, dK ⊗ 1 + 1⊗ d), h∞
σ∞

π∞

over k[x, y], where σ∞ = σ̃+ h̃aσ̃, π∞ = π⊗ 1 + (π⊗ 1)ah̃ and h∞ = h̃+ h̃ah̃. In fact one
can show via a direct calculation that (π ⊗ 1)ah̃ = 0 and so π∞ = π ⊗ 1. The maps σ∞
and h∞ can be written more conveniently as

σ∞ = σ̃ + h̃
∑
l≥0

(dh̃)ldσ̃ =
∑
l≥0

(h̃d)σ̃

and
h∞ = h̃+ h̃

∑
l≥0

(dh̃)ldh̃ =
∑
l≥0

(h̃d)h̃

It remains to remove the differential dK ⊗ 1. In a previous talk we showed that we
had an isomorphism of linear factorisations

(K(t)⊗k[y] Z, dK ⊗ 1 + 1⊗ dZ) ∼= K(t)⊗k[y] Z, 1⊗ dZ)

for any appropriate linear factorisation (Z, dZ). It has now come time to explicitly state
this isomorphism.

Let (Z, dZ) = (X⊗k[y]Y, dX⊗Y ). Recall that we have shown that ti acts null-homotopically
on Z, so let λi : ti ' 0 be such a homotopy (one example is λi = ∂ti(dX)). Next note that
we have a canonical isomorphism α : K(t) ⊗k[y] Z →

∧
(
⊕n

i=1 kθi) ⊗k Z where θi = dti.
We define

exp(δ) =
∑
m≥0

1

m!
δm and exp(−δ) =

∑
m≥0

(−1)m

m!
δm

where δ =
∑n

i=1 λiθ
∗
i . This definition makes sense because δ is nilpotent: with respect to

the Z-grading on
∧

(
⊕n

i=1 kθi) we see that δ has degree −1, and
∧

(
⊕n

i=1 kθi) is zero in
negative degree. The next result is [Mur18, Proposition 4.12].

Lemma 1. The map

exp(δ) : (
∧

(
⊕n

i=1 kθi)⊗k Z, dK + dZ) (
∧

(
⊕n

i=1 kθi)⊗k Z, dZ)

is an isomorphism with inverse exp(−δ).

Proof. Clearly exp(δ) and exp(−δ) are mutually inverse isomorphisms of modules so it
suffices to show that they commute with the differentials. We first show that [dZ , δ

m] =
mδm−1dK for m ≥ 1. When m = 1 we have

[dZ , δ] =
n∑
i=1

[dZ , λi]θ
∗
i =

n∑
i=1

tiθ
∗
i = dK
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Now consider m > 1. First note that

m−1∑
i=0

δi[dZ , δ]δ
m−i−1 =

m−1∑
i=0

δidZδ
m−i −

m−1∑
i=0

δi+1dZδ
m−i−1

=
m−1∑
i=0

δidZδ
m−i −

m∑
i=1

δidZδ
m−i

= [dZ , δ
m]

Then we have

[dZ , δ
m] =

m−1∑
i=0

δi[dZ , δ]δ
m−i−1 =

m−1∑
i=0

δidKδ
m−i−1 =

m−1∑
i=0

δm−1dK = mδm−1dK

as claimed. Next we compute [dZ , exp(−δ)]. We have

[dZ , exp(δ)] =
∑
m≥0

1

m!
[dZ , δ

m] =
∑
m≥1

1

(m− 1)!
δm−1dK = exp(δ)dK

Rearranging this expression we find

exp(δ)(dZ + dK) = dZ exp(δ)

which shows exp(δ) is a morphism of linear factorisations as required.

Putting all this together we have constructed a strong deformation retract

(Y |X, dY |X) (
∧

(
⊕n

i=1 kθi)⊗k X ⊗k[y] Y, 1⊗ dX⊗Y ), H
Φ

Φ′

over k[x, z], where θ1, . . . , θn are formal generators, Φ = exp(δ)ασ∞, Φ′ = (π⊗1)α−1 exp(−δ)
and H = exp(δ)αh∞α

−1 exp(−δ).

Passing to the completion

Forget that k is a field and suppose k be a commutative ring. Consider a sequence s =

(s1, . . . , sm) in k[y] and the ideal J = (s1, . . . , sn). Let k̂[y] denote the J-adic completion
of k[y].

Lemma 2. Suppose s is quasi-regular and that there exists a k-linear section σ : k[y]
/
J →

k[y] of the quotient map π : k[y]→ R
/
J . Then every f ∈ k̂[y] can be written uniquely as

a J-adic convergent series in of the form

f =
∑
u∈Nn

σ(ru)s
u

where ru ∈ R
/
J and su = su11 · · · sunn .

Lemma 2 is the key result which allows us to construct a system of t-derivatives over
the completion. Let t be as in the previous section. Note that we always have a k-linear
section σ : JV → k[y] of the quotient map since JV is free over k; JV is in particular
projective over k so the sequence

0 I k[y] JV 0
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splits over k. Furthermore we can choose σ such that σ(1) = 1.

This lets us define maps ∂t1 , . . . , ∂tn : k̂[y]→ k̂[y] as

∂ti(f) =
∑
u∈Nn

uiσ(ru)t
u−ei where f =

∑
u∈Nn

σ(ru)t
u

These possess analogous properties to the system of t-derivatives we have constructed
previously. Essentially the same results can be proved, replacing k[y] with the completion

k̂[y].
When k is a field we can choose a section σ in such a way that the coefficients can be

computed algorithmically. Let fix a monomial ordering on k[y] and let g be a Gröbner
basis for I. Let

V = {r ∈ k[y] | no term of r is divisible by any of the LT(gi)}

Lemma 3. The quotient map π : k[y]→ k[y]
/
I restricts to an isomorphism V → k[y]

/
I.

Proof. For injectivity suppose r ∈ V is such that π(r) = 0. Applying the division al-
gorithm to divide r by g yields the remainder term r, since none of the terms in r are
divisible by any of the LT(gi). Since r ∈ I and g is a Gröber basis we have r = 0. Note
that if g is not a Gröbner basis then the restriction π|V will fail to be injective.

For surjectivity, consider f ∈ k[y]. Via the division algorithm we obtain an expression
for f of the form

f = r +
∑
i

qigi

where r ∈ V . Then we have π(f) = π(r), and noting that π : k[y]→ k[y]
/
I is surjective

proves the claim.

Lemma 4. Any element f ∈ k̂[y] can be uniquely expressed as a series of the form

f =
∑
u∈Nn

rut
u

where ru ∈ V .

We now consider an algorithm to generate the coefficients in the series expansion of
an element f ∈ k[y]. The idea is as follows. Let {aij}i,j be the polynomials arising from
Buchberger’s algorithm which satisfy gi =

∑n
j=1 aijtj. Given f ∈ k[y] we can divide f by

g to obtain polynomials r0 ∈ C and q1, . . . , qn′ ∈ k[y] satisfying

f = r0 +
n′∑
i=1

qigi = r0 +
n∑
j=1

(
n′∑
i=1

aijqi

)
tj

Setting pj =
∑n′

i=1 aijgi, we can then divide each of the p1, . . . , pn by g to obtain polyno-
mials rj ∈ C and q1,j, . . . , qn′,j ∈ k[y] for j = 1, . . . , n satisfying

f = r0 +
n∑
j=1

rjtj +
n∑
j=1

n′∑
i=1

qi,jgitj = r0 +
n∑
j=1

rjtj +
n∑

j,l=1

(
n′∑
i=1

qi,jail

)
titl

The polynomials r0, r1, . . . , rn ∈ C are the coefficients of the zeroth and first order terms
in the series expansion for f . and we can continue to generate higher order coefficients
in this manner. In general this algorithm will not terminate. One can show this process
terminates when the {aij}i,j are all constant polynomials.
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