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Algebraic geometry is the study of solutions to polynomial equations. This is an
important area of study because the solutions to polynomial equations describe many
familiar geometrical objects. For example

• x2 + y2 + z2 = 1 is the 2-sphere,

• x2 + y2 − z2 = 1 is the hyperboloid,

• (x2 + y2 + 3)2 = 8(x2 + y2) is the torus.

The point of this obvious statement is to convey the idea that algebraic geometry is
more than an approach to commutative algebra which makes use of geometric analogies.
Varieties – particular sets of solutions to polynomial equations, and the central object
of study – are geometrical objects. Even when working over a field (or ring) which is
not R or C, certain definitions (the Zariski topolopgy) amount to assuming a minimal
topological structure on our space.

1 Affine varieties

Without loss of generality we consider the zero sets of polynomial equations – the solutions
of the equation given by setting a polynomial equal to zero. We now follow [1, Chapter
1]. Let k be a field1. We call kn affine n-space2.

Definition 1. An affine algebraic set is a subset of kn which is the zero set of a collection
of polynomials in k[x1, · · · , xn]. That is, it is a set of the form

V (S) := {a ∈ kn : ∀f ∈ S f(a) = 0}

where S ⊆ k[x1, · · · , xn]. An affine variety is an affine algebraic set which is not the
union of two other non-empty affine algebraic sets, and a quasi-affine variety is an open
subset of an affine variety (open in the subspace topology).

One can observe that:

• kn is an affine variety, since kn = V (0).

• The set V (S) depends only on the ideal generated by S, that is V ((S)) = V (S).

• Since k is Noetherian, so is k[x1, · · · , xn] (this is the Hilbert Basis Theorem) and so
for any S ⊆ k[x1, · · · , xn] there is a finite S ′ ⊆ k[x1, · · · , xn] with V (S) = V (S ′).

1In [1] it is assumed that k is algebraically closed, which allows more results to be proved in the classical
setting.

2In [1] this is denoted An
k .
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Another important observation is that the affine algebraic sets form the closed sets
of a topology on kn. Indeed, kn = V (0), ∅ = V (k[x1, · · · , xn]),

⋂
V (Si) = V (

⋃
Si) and

if I, J ⊆ k[x1, · · · , xn] are ideals then V (I) ∪ V (J) = V (IJ). We call this topology the
Zariski topology on kn. The Zariski topologies are the weakest topologies in which {0} ⊆ k
is closed and polynomials are continuous, so declaring affine algebraic sets to be closed is
equivalent to having the ambient assumption that kn has a sufficiently nice topology to
make the geometry ‘work’3. Some facts to get a feel for the Zariski topology:

• Suppose k = R or k = C. If a set is closed (resp. open) in the Zariski topology on
kn then it is closed (resp. open) in the usual topology on kn. If a map is continuous
in the Zariski topology then it is continuous in the usual topology.

• Points in kn are closed.

• The Zariski topology is not Hausdorff.

• Every affine algebraic set has a unique expression as the finite union of distinct,
non-nested affine varieties4 [1, Proposition 1.5].

• Every open subset of a variety (i.e. the quasi-affine varieties) is dense.

Finally we can define the dimension of a variety as follows. If Y is a variety then the
dimension of Y is the length m of the longest chain of distinct varieties

{a} = Z0 ( Z1 ( · · · ( Zm = Y

contained in Y . This can be understood recursively: a variety which is a point has
dimension 0, and a variety has dimension n if it strictly contains a variety of dimension
n − 1, and every other variety it strictly contains has dimension at most n − 1. This
recursive property also holds for the dimension of vector spaces, and the dimension of
manifolds (where submanifolds are defined in the ‘adapted chart’ sense, not as a subset
which is also a manifold).

2 Singularities of varieties

Recall the regular value theorem from real differential geometry. Let f : U ⊆ Rn → Rm

be a differentiable function. We say that a point y ∈ Rm is a regular value of f if for every

a ∈ f−1(y) the Jacobian J(a) =
[
∂fi
∂xj

(a)
]

at a has rank m (i.e. it is a surjective linear

map). If y ∈ Rm is a regular value then f−1(y) is a submanifold of dimension n−m, or
equivalently rank J(a) = codim f−1(y) = n− dim f−1(y).

Let Y ⊆ kn be an affine variety, and define

I(Y ) = {f ∈ k[x1, · · · , xn] : ∀a ∈ Y f(a) = 0}.

One can observe that I(Y ) is an ideal of k[x1, · · · , xn]. We already have a good definition
of the dimension of Y , so we define non-singular points of varieties as follows.

3Note that this assumption is weaker than k being a topological ring in which {0} is closed. The latter
assumes polynomials are continuous with respect to the product topology on kn, whereas we only assume
there is some topology on kn making polynomials continuous. The Zariski topology on kn is not the
product topology. For example {(x, x) : x ∈ k} is closed in the Zariski topology on k2 but not in the
product topology on k2.

4This follows from the fact that the Zariski topology is Noetherian (every descending chain of closed sets
stabilises) and is a general fact about Noetherian topologies. In a general topological space a closed set
which is not the union of two other non-empty closed sets (eg a variety) is called irreducible.
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Definition 2. Let f1, · · · , fk generate I(Y ). A point a ∈ Y is non-singular if the formal

Jacobian
[
∂fi
∂xj

(a)
]

has rank n− dimY . Otherwise a ∈ Y is called a singularity of Y .

If Y is nonsingular at every point then it is called non-singular variety. When working
over a field like R or C non-singular varieties are exactly the manifolds, and the singular
points of a singular variety and the points which are not locally isomorphic to an open
subset of kdimY .

Note that if Y = V (g1, · · · , gm) then it is not necessarily true that rank
[
∂gi
∂xj

(a)
]
<

n−dimY implies a is a singularity of Y , since the g1, · · · , gm may not generate I(Y ). For
example consider Y = {x ∈ R : g(x) = x2 = 0}. The Jacobian g′′(0) = 0, but I(Y ) = (x),
which is not generated by x2. This highlights an important difference between singu-
larities of functions and singularities of sets (varieties). In Watanabe [2] we are mostly
interested in singularities of functions, while blow-ups are an operations on varieties. The
relationship between these two concepts is discussed more in Section 4.

3 Blow-ups

Blow-ups are procedure which removes singularities from a variety. Consider the variety
Y defined by y2 = x2(x+1) (Include a diagram) which has a singularity at (x, y) = (0, 0).
A way we might distinguish between the two different parts of Y intersecting (0, 0) is
to look at the slope at which they intersect the origin. The idea of the blow-up is to
introduce additional variables which parameterise the lines passing through the origin.

Definition 3. We define projective n-space as Pn = kn+1 \ {0}
/
∼ where p ∼ q if and

only if p = λq for some λ ∈ k.

We can understand Pn as the space of lines passing through the origin of kn+1: the
point p = (p1, · · · , pn) ∈ Pn corresponds to the line p1x1 + · · · + pnxn + pn+1xn+1 =
0. Polynomial functions f ∈ k[x1, · · · , xn+1] are well defined on Pn+1 whenever every
monomial in f has the same degree, since f(λp) = λdeg ff(p). We call such polynomial
homogeneous. Just as for affine space, we define projective algebraic sets as subsets of Pn

of the form
V (S) = {p ∈ Pn : ∀f ∈ Sf(p) = 0}

where S ⊆ k[x1, · · · , xn+1] is a set of homogeneous polynomials. As in the affine case a
projective variety is defined as a projective algebraic set which is not the union of two
other non-empty projective algebraic sets, and a quasi-projective variety is an open subset
of a projective variety.

Lemma 4. Pn is covered by n + 1 quasi-projective varieties, each isomorphic to kn. In
particular kn is a quasi-projective variety.

Proof. (sketch) We haven’t defined morphisms of varieties (see [1, p. 15]), so I will just
define the sets and provide the map which can be shown to be an isomorphism. For a full
proof see [1, Proposition 2.2, Proposition 3.3]. Let Ui = {(p1, · · · , pn+1) ∈ Pn : pi 6= 0},
noting that is is an open set. Then the maps

ϕi : Ui → kn ϕi(p1, · · · , pn+1) = (p1/pi, · · · , p̂i, · · · pn/pi)

define isomorphisms of varieties, where p̂i denotes that this element has been removed. It
is at least easy to see they are bijections.

We now follow [1, p. 28] in defining blow-ups.
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Definition 5. Consider the product kn×Pn−1 and polynomials f ∈ k[x1, · · ·xn, y1, · · · , yn]
defining functions on kn×Pn−1. The blow-up of kn at 0 ∈ kn is defined to be the zero set

X = {xiyj = xjyi : i, j = 1, · · ·n} ⊆ kn ×Pn−1.

Denote by ϕ : X → kn the usual projection restricted to X.

If you are willing to believe that the product of quasi-projective varieties is a quasi-
projective variety (this is [1, Exercise 3.6]) then note that kn×Pn−1 is a quasi-projective
variety and so X is closed in kn ×Pn−1.

Lemma 6. ϕ : X \ ϕ−1(0)→ kn is a bijection and ϕ−1(0) ' Pn.

Proof. ϕ−1(0) = {(0, · · · , 0, y1, · · · , yn) : (y1, · · · , yn) ∈ Pn−1} so ϕ−1(0) ' Pn is clear.
Now consider (a1, · · · , an, p1, · · · , pn) ∈ X \ ϕ−1(0) and suppose ai0 6= 0. Then we

have pj = (aj/ai0)pi0 . Now pi0 6= 0, so we may take pi0 = ai0 giving (p1, · · · , pn) =
(a1, · · · , an). Therefore (a1, · · · , an) 7→ (a1, · · · , an, a1, · · · , an) is inverse to ϕ restricted
to X \ ϕ−1(0).

Definition 7. The blowup of a variety Y ⊆ kn is Ỹ = ϕ−1(Y \ {0}).

We now present [1, Example 4.9.1]. Consider the variety Y given by the equation
y2 = x2(x+ 1). For (p, q) ∈ P1 we have

ϕ−1(Y ) = {(x, y, p, q) ∈ k2 ×P1 : y2 = x2(x+ 1), xp = yq}

Let U = {(x, y, p, q) : q 6= 0} and V = {(x, y, p, q) : p 6= 0}, noting that both are open.
For (x, y, p, q) ∈ U the map (x, y, p, q) 7→ (x, y, p/q) is an isomorphism U ' k3. Setting
u = p/q, under this isomorphism ϕ−1(Y ) ∩ U is given by the equations

ϕ−1(Y ) ∩ U ' {(x, y, u) ∈ k3 : y2 = x2(x+ 1), y = xu}
= {(x, y, u) ∈ k3 : x2(u2 − x− 1) = 0, y = xu} (∗)
= {(x, y, u) ∈ k3 : x = y = 0}
∪ {(x, y, u) ∈ k3 : x = u2 − 1, y = xu}

Note that Ỹ ∩ U = {(x, y, u) ∈ k3 : x = u2 − 1}, and that this is a non-singular affine
variety. The other irreducible component is ϕ−1(0) ∩ U , and is called the exceptional set.
Note that Ỹ intersects ϕ−1(0) ∩ U at u = −1, 1, which corresponds to the slope of each
part of Y intersecting the origin in k2. On V , setting v = q/p, we can similarly find

ϕ−1(Y ) ∩ V ' {(x, y, v) ∈ kc3 : x = y = 0}
∪ {(x, y, v) ∈ k3 : 1− yv3 − v2 = 0, x = yv}.

Watanabe [2] refers to these reparameterisations as local (affine) coordinates for Y (for
example in [2, Example 3.14, Theorem 4.6]). Notice that the equation defining (∗) above
above is in normal crossing form [2, Definition 2.8] and is one of the local coordinates in
normal crossing form asserted to exist in [2, Theorem 3.6].

If Y has a singularity at 0 then the blowup has the effect of simplifying that singu-
larity. Blow-ups at points away from zero can be found by first doing a linear change of
coordinates.
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4 Blow-ups in singular learning theory

The main tool from algebraic geometry used in singular learning theory is Hironaka’s
Resolution of Singularities (of [3]). In [2], Watanabe states three versions of this theorem:
for analytic functions [2, Theorem 2.3], for varieties [2, Theorem 3.5], and for polynomial
functions [2, Theorem 3.6]. In this section we will discuss the version for varieties and the
version for polynomial functions.

The version of Hironaka’s Theorem for varieties states that using finitely many blow-
ups we can completely remove all singularities from a variety. The version of Hironaka’s
theorem for polynomial functions states that using finitely many blow-ups we can put
the polynomial in normal crossing form, which is a form in which the singularities of the
function are simple. This is defined as follows:

Definition 8. An analytic function f : U ⊆ Rn → R in normal crossing form at
(a1, · · · , an) ∈ U if

f(x) = a(x)
n∏

i=1

(xi − ai)ki

where a(x) is an analytic function which is nowhere zero on an open neighbourhood U ′

of (a1, · · · , an) and the ki are non-negative integers.

Recall [1, Example 4.9.1] discussed in Section 4. We found a reparameterisation of
the polynomial f(x, y) = y2− x2(x+ 1) which put it in normal crossing form at 0 on line
(∗). Since f(x, y) generates the ideal of the variety I(Y ) the difference between the two
versions of Hironaka’s Theorem appears to be a decision about whether to consider the
exceptional sets or not.

But as we discussed at the end of Section 2 a function being singular is not the same as
its zero set being singular. Consider the the polynomial function f(x, y) = (x+y)2. It has a
critical point at x = y = 0, but the variety {(x, y) ∈ k2 : (x+y)2} = {(x, y) ∈ k2 : x = −y}
is non-singular. Despite this, if we proceed with the blow up at (x, y) = (0, 0) then the
polynomial is parameterised as (u+ 1)2y2 = 0, x = yu which is normal crossing.
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